一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

不管是高速電路還是射頻電路,當(dāng)微帶線跨分割時信號將會引起什么樣的問題

QTv5_SI_PI_EMC ? 來源:未知 ? 作者:鄧佳佳 ? 2018-02-27 11:39 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

前言

現(xiàn)在的高速設(shè)計中我們不能只去單獨的分析信號完整性,電源完整性或者是EMC, 而是要整體分析,才能保證設(shè)計的成功。

背景問題:當(dāng)某層上的信號跨過相鄰參考平面的分割區(qū)域時,討論信號完整性總是會引起爭論。有人說信號不應(yīng)該跨分割,因為這將會增加串?dāng)_,并且很有可能過不了EMC,有人說如果小心設(shè)計層疊結(jié)構(gòu)和電源/地平面上分割縫隙的寬度,應(yīng)該不會有問題…那么應(yīng)該是什么樣的呢?當(dāng)然最好的回答就是“it depends!”,本文就來討論一下信號通過分割平面時的情況。

首先看一個典型的四層PCB層疊結(jié)構(gòu),總厚度是62mil,表層為信號層,內(nèi)層為平面層,走線規(guī)則7/8mil,差分阻抗100ohm,單端阻抗56ohm。

圖1

在現(xiàn)代電子產(chǎn)品設(shè)計中,一個產(chǎn)品存在多種電源軌是很正常的,這意味著在一個四層板中,電源平面肯定會被分割,因此布線的時候存在的跨分割也就不可避免。

假設(shè)有一對表層的傳輸線跨過相鄰層50mil寬的縫隙,如圖所示為微帶線在通過縫隙前后的橫截面,從表層到參考電源層的介質(zhì)厚度H1。由于縫隙處沒有相鄰的電源參考平面,下一個參考平面是地,與底層相鄰,因此,縫隙處的介質(zhì)厚度等于H1加上1oz厚的電源層,再加下一個介質(zhì)層H2.如果電源層的厚度是1.2mil,那么間隙部分總的介質(zhì)就是51.2mil。

該拓撲的一階近似是具有兩種不同阻抗的三段傳輸線段的組合。第一段和最后一段都是100ohm的差分阻抗和56ohm的單端阻抗,而縫隙部分的傳輸線的差分阻抗為134ohm,單端阻抗為103ohm,其阻抗比其他部分高,所以信號在這里是發(fā)生正反射。反射的高度和寬度是對應(yīng)信號上升時間和縫隙幾何形狀的函數(shù)。上升時間越快,縫隙越寬,造成較的反射越大。圖3為仿真結(jié)果:

不管是高速電路還是射頻電路,當(dāng)微帶線跨分割時信號將會引起什么樣的問題

圖2

第一段和第三段傳輸線都是用的TLines-LineType的2D模型進行仿真求解(ADS),縫隙處的傳輸線采用的是3D電磁場求解器(Momentum或者EMPro)仿真獲得,目的是為了得到信號通過時的電磁場效應(yīng),介質(zhì)都是一樣的。將S參數(shù)提取出來并用于原理圖中。

拓撲的總長度為2.65inch,第一段傳輸線的長度L1為500mil,第三段傳輸線的長度L1為2inch,3D部分被分成三個50mil,以方便調(diào)整縫寬,并確??傞L度保持不變。

兩個縫隙寬度用來比較縫隙大小的影響。電源平面之間有50mil的縫隙是常見的,這里用作最壞的情況。5mil縫隙是最佳的情況,這也是傳輸線到焊盤的典型最小值。

不管是高速電路還是射頻電路,當(dāng)微帶線跨分割時信號將會引起什么樣的問題

圖3

從port1端加入差分激勵源,差分阻抗的比較如圖4所示,為了方便查看2端口阻抗,使用巴倫轉(zhuǎn)換器,將4端口轉(zhuǎn)換成2端口。紅色的是50mil gap的結(jié)果,與5mil gap的結(jié)果(藍色)相比有著較高的阻抗不連續(xù)性。這是因為發(fā)射脈沖的高度是由上升時間和間隙寬度共同決定的,由于上升時間在空間長度上要比間隙寬度小,僅改變上升時間達不到阻抗不連續(xù)的最大值。下面通過仿真來證明。

不管是高速電路還是射頻電路,當(dāng)微帶線跨分割時信號將會引起什么樣的問題

圖4

從port2端加入激勵源,縫隙為50mil,與從port1端輸入信號比較,如下圖。由于gap之前有2.05inch的延遲,再加上傳輸線的損耗,信號邊沿會較慢。正如預(yù)期的一樣,反射的幅度的確較低。

不管是高速電路還是射頻電路,當(dāng)微帶線跨分割時信號將會引起什么樣的問題

圖5

下面是對單端情況的分析,如圖所示,紅色曲線是gap為50mil,藍色為5 mil,黑色為沒有g(shù)ap的情況。信號上升時間是20ps,同沒有g(shù)ap的情況相比,gap為50mil時的反射電壓最高,此時傳輸信號的上升時間衰減,使傳輸線延遲略微增加。

三種情況都可以看到典型的近端串?dāng)_和遠端串?dāng)_曲線變化。通過縫隙時,傳輸線間的緊耦合,使得較高的反射表現(xiàn)為較大的近端串?dāng)_。

不管是高速電路還是射頻電路,當(dāng)微帶線跨分割時信號將會引起什么樣的問題

圖6

在50mil gap時近端串?dāng)_脈沖明顯的增大,但是遠端串?dāng)_卻僅僅增大了一點點。與近端串?dāng)_電壓不同,遠端串?dāng)_電壓的峰值隨耦合長度而變化。在一定的時間延遲(TD)時,它的振幅在攻擊線信號上升時間的50%左右時達到峰值。

同樣的方式,攻擊線的信號與遠端串?dāng)_電壓會耦合到受害線上,遠端串?dāng)_和噪聲又耦合回到攻擊線,從而影響了上升時間。攻擊線在遠端的波形是遠端串?dāng)_電壓與原始信號電壓的疊加,這時信號沒有串?dāng)_。由于遠端距離源端2.65inch,此時遠端串?dāng)_已接近飽和。如果減少最后一段傳輸線的長度到100mil,如圖7,更容易理解gap對遠端串?dāng)_的影響。

紅色曲線是輸入信號(V7),上升時間是20ps,藍綠色曲線(V8)是傳輸信號到遠端時的波形,亮藍色(V5)是近端串?dāng)_,亮綠色(V6)是遠端串?dāng)_,墨綠色(V15)是傳輸信號在經(jīng)過TL44之后,結(jié)點V13的攻擊信號。因為縫隙部的特性阻抗較高,在經(jīng)過縫隙這段傳輸線上可以看到由反射增加引起的過沖。

橘色波形(V13)顯示出遠端負串?dāng)_脈沖,同V15端攻擊線信號上升沿一致。近端串?dāng)_也同V15處的正反射一致。由于攻擊信號在通過縫隙時會有延遲時,反射的額外電壓擺幅增加了遠端串?dāng)_脈沖的幅度,并且其反轉(zhuǎn)形狀反映了反射脈沖的形狀,如墨綠色的波形(V14),然后遠端串?dāng)_脈沖耦合回攻擊信號并使上升時間衰減,直到離開耦合部分,如品紅色曲線(V16)。

當(dāng)攻擊信號通過最后一段傳輸線TL45后,遠端串?dāng)_脈沖幅度與線長成正比。因為最后一段傳輸線只有100mil,所以這里并未達到最大值。

本文的問題是:當(dāng)信號通過分割平面時,傳輸信號會由于阻抗不連續(xù)引起正反射,反射的時間等于通過縫隙的時間,這就增加了信號的幅度及遠端串?dāng)_脈沖的幅度,從而使傳輸信號上升時間變慢,與遠端串?dāng)_的脈沖波形成比例。

圖7

將分割平面和分割邊緣處的多種回流一起考慮,此時產(chǎn)生了一個有效的槽型天線,并向外輻射噪聲。為滿足EMI FCC的B級輻射要求(3米場),輻射噪聲在30-80MHz時,必須小于100mV/m,在216MHz-1GHz時小于200mV/m,在這些低電壓下,EMC的失敗不需要太多的電流

微帶線在通過分割平面時,由于回流路徑不連續(xù),又沒有覆蓋層,因此噪聲會輻射到自由空間??梢韵胂竽軌蛲ㄟ^3D仿真軟件看到相鄰參考平面上縫隙處返回電流的情況。

圖8比較了單端信號在相鄰參考平面上的返回電流密度,左邊為一個4GHz正弦波通過50mil的縫隙,右邊是5mil的縫隙。之所以選擇4GHz信號,因為它是典型4層PCIe板上8 Gbps PCIe Gen 3的Nyquist頻率。將驅(qū)動信號從端口1傳到端口2,端口3、4上都做好端接,可以清楚的看到參考平面上返回電流密度在分割處的分布情況。

注意受害線在縫隙邊緣處的電流密度略有增加。這表明相鄰線上的返回電流造成了前邊討論的額外的遠端串?dāng)_電壓。僅從這個圖中來看的話,單端線跨分割并不是一個好的方法。

不管是高速電路還是射頻電路,當(dāng)微帶線跨分割時信號將會引起什么樣的問題

圖8

圖9是4GHz的差分信號分別通過50mil(左)和5mil(右)縫隙時在參考平面上的返回電流密度??梢钥闯?,兩個差分對之間最大的電流密度集中在分割邊緣處,只有一小部分沿著縫隙傳出去了。

不管是高速電路還是射頻電路,當(dāng)微帶線跨分割時信號將會引起什么樣的問題

圖9

將單端信號從端口1輸入到端口2,其他端口做好端接,圖10顯示了平面層L2和L3上電流的方向??梢钥吹疆?dāng)電流方向是從端口2到端口1時,L2上的返回電流在到達縫隙的遠端時(端口1側(cè))被分成左右兩部分。

同時也可以看到L3上有兩個反向旋轉(zhuǎn)電流,基本上都集中在間隙的左右兩半部分,它們是由于沿著L2上縫隙邊緣的反向旋轉(zhuǎn)電流將EM能量注入到平面腔中引起的。注意L2和L3上的旋轉(zhuǎn)電流方向是相反的。

不管是高速電路還是射頻電路,當(dāng)微帶線跨分割時信號將會引起什么樣的問題

圖10

但是當(dāng)在兩根傳輸線上輸入差分信號時,如圖11,可以看到電流在縫隙邊沿上的方向是相同的。同時也要注意旋轉(zhuǎn)電流在L3上是一個方向的,集中在差分對和縫隙之間的部分。

問題是即使在兩根傳輸線上輸入差分信號,也會有電流流到間隙邊緣處,從而將噪聲引入平面腔,也會輻射到自由空間去,造成EMI。

不管是高速電路還是射頻電路,當(dāng)微帶線跨分割時信號將會引起什么樣的問題

圖11

前邊分析的差分對的例子采用的是對內(nèi)完全匹配,但是實際中這種情況很少存在,像布線不等長、玻纖效應(yīng)、連接器引腳長度不同或者是換層時差分過孔的不對稱,這些問題都會引起對內(nèi)延遲差。當(dāng)這些情況發(fā)生時,一些差模信號會轉(zhuǎn)化成為共模信號,如圖12,轉(zhuǎn)化程度取決于對內(nèi)延遲差。在理想差分對中,Vdiff是P/N信號之前的電壓差。如果它們的相位差是180度,差模電壓會翻倍,并且不存在共模電壓。

在有偏移(skew)的時候,差分對的相位差就不是180度了,考慮到偏移的話,差分信號會變形,并且會產(chǎn)生共模電壓(Vcom)。共模電壓的幅度和形狀與相位偏移是成比例的。如果P和N的相位相同,這時沒有差模電壓,全部是共模電壓。

共模電壓也需要回流路徑,如果路徑被中斷了,它的返回電流就會像單端返回電流一樣通過分割平面。

不管是高速電路還是射頻電路,當(dāng)微帶線跨分割時信號將會引起什么樣的問題

圖12

根據(jù)一些PCIe布線規(guī)范,最差的偏移是0.21UI(一個UI是一個比特位的時間)。在PCIe Gen3 8Gbps時,0.21UI的偏移是26.3ps。

將通過50mil間隙的情況等效為對內(nèi)相移,并同理想情況的對比結(jié)果如圖13.如所期望的一樣,共模電壓通過分割平面,共模返回電流跟單端線通過分割平面時(圖8)的情況類似。唯一的區(qū)別是沒有100%的共模電流,因此也會存在差模返回電流。

圖13

最后要解決的問題是,如果在相鄰的地層和分割電源層之間有一層非常薄的介質(zhì)層,那么它將作為通過分割層時更好的返回路徑。從邏輯上講,這從信號完整性的角度來看是有意義的,因為傳輸線的阻抗隨傳輸線和分割參考平面之間的電介質(zhì)厚度增加而減小。

前邊的例子我們假設(shè)的是四層板,62mil厚。這幾乎決定了疊層的內(nèi)層介質(zhì)的厚度。為了將參考平面移至接近電源平面的縫隙,這就需要PCB層數(shù)需要增加到最少6層,以保持層疊的對稱性及總厚度。

如果減小gap下邊的介質(zhì)厚度,重新仿真5mil gap,單端的情況,結(jié)果見圖14。這層薄的介質(zhì)層設(shè)為2mil,是電源平面去耦埋容芯板的常見厚度。再加上5milH1的厚度,和1.2mil厚的電源平面L2,如圖1,間隙下方總的介質(zhì)厚度為8.2mil。

左邊的圖可以看到大部分的返回電流被轉(zhuǎn)移到參考平面L2縫隙的周圍,右圖中可以看到信號通過縫隙時,大部分返回電流流向傳輸線下方的參考平面L3, 但仍有一些電流會在L2的縫隙附近,因此也會輻射出去一部分噪聲。

圖14

從信號完整性的角度看,反射信號及近端串?dāng)_噪聲基本上減少了一半,如圖15,傳輸信號的上升時間有較少的衰減,而且遠端串?dāng)_也得到了提升。

不管是高速電路還是射頻電路,當(dāng)微帶線跨分割時信號將會引起什么樣的問題

圖15

再回到主題,到底哪種說法是正確的?二者都不全對,本文中討論了微帶線通過分割平面的幾種情況。從信號完整性的角度看,在一定條件下,微帶線通過分割平面是沒問題的。例如上邊的仿真,只要分割平面的間隙減小到5mil,并且在相鄰平面層之間加一層薄的介質(zhì)層時,串?dāng)_沒有明顯的增加。根據(jù)實際的噪聲容限,這個可能不會有影響。

但就通過EMC來說,還是有更多的風(fēng)險和疑慮。但是不會存在一部分返回電流永遠不流向參考平面縫隙的邊緣的情況,因此仍然存在EMI的風(fēng)險。因為實際設(shè)計中有很多相關(guān)性影響最終性能,所以很難有一個通用的規(guī)則在這里適用,在其他任何情況下也適用。

一般情況下微帶線應(yīng)避免跨分割,當(dāng)根據(jù)實際layout和板子的層疊結(jié)構(gòu)不能做更詳細的分析時,或許可以尋找其他可減輕噪聲輻射的方法,比如增加額外的外部屏蔽。

最后本文強調(diào)的是對于現(xiàn)在的高速設(shè)計,我們不能僅通過信號完整性、電源完整或EMC中的一個來限制自己的思維,必須要三者同時考慮。如果僅考慮信號完整性而不考慮EMC的話,我們可能會下錯誤的結(jié)論,最后產(chǎn)品可能會因為EMC兼容測試而失敗。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 射頻電路
    +關(guān)注

    關(guān)注

    36

    文章

    440

    瀏覽量

    43992
  • 高速電路
    +關(guān)注

    關(guān)注

    8

    文章

    163

    瀏覽量

    24594

原文標(biāo)題:不管是高速電路還是射頻電路,當(dāng)微帶線跨分割時,信號將會引起什么樣的問題呢?

文章出處:【微信號:SI_PI_EMC,微信公眾號:信號完整性】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    射頻電路信號有什么影響

    射頻電路,聽起來是不是有點高大上?其實它就在我們身邊,手機信號、無線網(wǎng)絡(luò),都離不開它的功勞。今天,咱們就來好好聊聊,射頻電路到底是干啥的,它
    的頭像 發(fā)表于 07-16 11:00 ?306次閱讀
    <b class='flag-5'>射頻</b><b class='flag-5'>電路</b>對<b class='flag-5'>信號</b>有什么影響

    凡億Allegro Skill布線功能-檢查分割

    能會導(dǎo)致設(shè)計中的缺陷和問題。為了克服這一挑戰(zhàn),可以利用凡億skill中的“檢查分割”命令。這個工具能夠幫助設(shè)計者快速而準(zhǔn)確地識別出高速信號參考平面的
    的頭像 發(fā)表于 06-19 11:50 ?1119次閱讀
    凡億Allegro Skill布線功能-檢查<b class='flag-5'>跨</b><b class='flag-5'>分割</b>

    290-00G發(fā)射配件連接器現(xiàn)貨庫存:高性能射頻解決方案

    應(yīng)用:290-00G連接器適合用在高頻信號數(shù)據(jù)傳輸,應(yīng)用于毫米波和高功率射頻系統(tǒng)。發(fā)射配件:290-00G連接器適用于微帶線發(fā)射或微帶線發(fā)射的電介質(zhì)和管腳,適合用在檢測設(shè)備、軍事設(shè)備等
    發(fā)表于 06-12 08:51

    高速信號線溝對眼圖抖動的影響分析

    今天講一下高速信號線溝對眼圖抖動的影響。Chrent高速信號溝及
    的頭像 發(fā)表于 06-04 17:32 ?203次閱讀
    <b class='flag-5'>高速</b><b class='flag-5'>信號線</b><b class='flag-5'>跨</b>溝對眼圖抖動的影響分析

    ADC不管是否有模擬信號輸入,輸出都是一堆固定的重復(fù)的值,為什么?

    不管是否有模擬信號輸入,輸出都是一堆固定的重復(fù)的值。是不是ADC沒有正常工作
    發(fā)表于 04-16 06:37

    一文告訴你為什么不要隨便在高速旁邊鋪銅!

    /下降時間)被減緩,可能導(dǎo)致時序錯亂。 信號帶寬受限,影響高速數(shù)據(jù)傳輸(如PCIe、DDR等)。 本質(zhì)在于:原本是“帶狀”,或者“微帶線”,但是你把旁邊鋪上銅了之后,他就變了,變
    發(fā)表于 04-07 10:52

    射頻電路設(shè)計——理論與應(yīng)用

    也能了解和掌握射頻、微波電路的基本設(shè)計原則和方法。全書共10章,涵蓋傳輸、匹配網(wǎng)絡(luò)、濾波器、混頻器、放大器和振蕩器等主要射頻微波系統(tǒng)單元的理論分析和設(shè)計問題及
    發(fā)表于 04-03 11:41

    高速信號線走線規(guī)則有哪些

    高速數(shù)字電路設(shè)計中,信號完整性(SI)是確保系統(tǒng)性能和可靠性的核心要素。高速信號線的走線規(guī)則對于維持
    的頭像 發(fā)表于 01-30 16:02 ?1391次閱讀

    高速信號越短越好嗎為什么

    高速數(shù)字電路設(shè)計中,信號的長度是一個至關(guān)重要的考量因素。隨著數(shù)據(jù)傳輸速率的不斷提升,信號完整性、時序準(zhǔn)確性和系統(tǒng)可靠性等方面的挑戰(zhàn)也隨
    的頭像 發(fā)表于 01-30 15:56 ?758次閱讀

    ADS1293不管是配置上升沿中斷還是下降沿中斷,DRDY腳始終沒有電平跳變,為什么?

    我是一個單片機的初學(xué)者,在使用ADS1293的時候,用的是SPI時序,CPOL=0.CPOH=0;經(jīng)過測試發(fā)現(xiàn)可以讀取和寫入數(shù)據(jù),但是我配置了DRDY腳為輸入模式,然后不管是配置上升沿中斷還是下降沿中斷,DRDY腳始終沒有電平跳變。我想知道這是怎么回事?希望大神能夠給予
    發(fā)表于 12-24 06:49

    射頻電路設(shè)計的基本原則 射頻信號干擾的解決方法

    在特定頻率下工作。 阻抗匹配 :為了最大限度地減少信號反射和功率損耗,射頻電路中的各個部分需要實現(xiàn)阻抗匹配。 信號完整性 :在高頻下,信號
    的頭像 發(fā)表于 12-03 09:59 ?1969次閱讀

    高速信號測試知識分享

    什么是高速信號 隨著電子技術(shù)的飛速發(fā)展,信息交換的速度不斷提高,高速信號的頻率和復(fù)雜度也不斷增加,如何準(zhǔn)確測試和測量高速
    的頭像 發(fā)表于 11-08 11:50 ?969次閱讀

    射頻電路pcb設(shè)計需要注意事項

    射頻(RF)電路的PCB設(shè)計是一個復(fù)雜且要求精確的過程,涉及到信號完整性、電磁兼容性、熱管理、材料選擇等多個方面。 射頻電路PCB設(shè)計概述
    的頭像 發(fā)表于 09-07 10:02 ?1197次閱讀

    昆山精鼎電子射頻電路PCB設(shè)計技巧

    地連到主地上,多打地過孔,盡量降低地線阻抗。 RF電路的電源盡量不要采用平面分割,整塊的電源平面不但增加了電源平面對RF信號的輻射,而且也容易被RF信號的干擾。所以電源
    發(fā)表于 08-20 11:44

    OPA376能用來做阻抗放大電路嗎?

    來做阻抗放大電路嗎?我們公司都是用了這個芯片做這個電路。 2、10nA的小信號需要用到RF=100Mohm才能達到需要的電壓輸出要求,請問CF應(yīng)該設(shè)計成多少? 3、RF和CF是用貼片
    發(fā)表于 08-16 06:18