一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

混合鍵合中的銅連接:或成摩爾定律救星

深圳市賽姆烯金科技有限公司 ? 來(lái)源:深圳市賽姆烯金科技有限 ? 2025-02-09 09:21 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

混合鍵合3D芯片技術(shù)將拯救摩爾定律。

為了繼續(xù)縮小電路尺寸,芯片制造商正在爭(zhēng)奪每一納米的空間。但在未來(lái)5年里,一項(xiàng)涉及幾百乃至幾千納米的更大尺度的技術(shù)可能同樣重要。

這項(xiàng)技術(shù)被稱為“混合鍵合”,可以將兩塊或多塊芯片疊放在同一個(gè)封裝中。這使芯片制造商能夠增加處理器和內(nèi)存中的晶體管數(shù)量,雖然晶體管的縮小速度已普遍放緩,但這曾推動(dòng)摩爾定律發(fā)展。2024年5月,在美國(guó)丹佛舉行的IEEE電子器件與技術(shù)大會(huì)(ECTC)上,來(lái)自世界各地的研究團(tuán)隊(duì)圍繞這一技術(shù)公布了多項(xiàng)研究改進(jìn),其中一些成果可能會(huì)產(chǎn)生創(chuàng)紀(jì)錄的3D堆疊芯片連接密度:每平方毫米硅片約700萬(wàn)個(gè)連接。

ae4733d0-e5c0-11ef-9310-92fbcf53809c.jpg

在IEEE電子器件與技術(shù)大會(huì)上,來(lái)自英特爾公司的石毅(Yi Shi,音)告訴與會(huì)工程師們,由于半導(dǎo)體工藝的新特性,所有這些連接都是必需的。摩爾定律現(xiàn)在被一種稱為系統(tǒng)技術(shù)協(xié)同優(yōu)化(STCO)的概念主宰,根據(jù)這一概念,芯片的各項(xiàng)功能(如緩存、輸入/輸出和邏輯)分別使用最適合的技術(shù)制造。然后,可以采用混合鍵合和其他先進(jìn)封裝技術(shù)將這些子系統(tǒng)組裝起來(lái),使它們像單塊硅片一樣全力工作。但只有在連接密度足夠高,且在不同硅片之間傳輸數(shù)據(jù)的延遲或能耗都很小的情況下,這才能實(shí)現(xiàn)。

在所有先進(jìn)封裝技術(shù)中,混合鍵合提供了最高密度的垂直連接。因此,Yole集團(tuán)的技術(shù)和市場(chǎng)分析師加布里埃拉?佩雷拉(Gabriella Pereira)表示,它是先進(jìn)封裝行業(yè)中增長(zhǎng)最快的一部分。根據(jù)Yole集團(tuán)的預(yù)測(cè),到2029年,先進(jìn)封裝行業(yè)整體市場(chǎng)規(guī)模將增長(zhǎng)2倍以上,達(dá)到380億美元,屆時(shí),混合鍵合預(yù)計(jì)將占據(jù)其中約一半的市場(chǎng)份額,雖然目前它僅占市場(chǎng)的一小部分。

在混合鍵合中,每塊芯片的頂面均放置銅焊盤(pán),周?chē)^緣層,通常是硅氧化物,銅焊盤(pán)嵌在絕緣層表面。在對(duì)氧化物進(jìn)行化學(xué)改性后,將兩塊芯片面對(duì)面擠壓在一起,使每塊芯片上嵌入的銅焊盤(pán)相互對(duì)齊。然后慢慢加熱夾層,使銅膨脹填滿間隙并熔化,從而將兩塊芯片連接起來(lái)。

混合鍵合可以將一種尺寸的單塊芯片附著到一個(gè)更大尺寸芯片的完整晶圓上,也可以將兩片相同尺寸的完整晶圓鍵合在一起。佩雷拉表示,由于后者在相機(jī)芯片中得到了應(yīng)用,其工藝比前者更加成熟。例如,歐洲微電子研究中心(Imec)的工程師們創(chuàng)造出了一些有史以來(lái)最密集的晶圓對(duì)晶圓鍵合,鍵合距離(或稱為間距)僅400納米。但對(duì)于芯片與晶圓鍵合,歐洲微電子研究中心實(shí)現(xiàn)的間距僅為2微米。

相比目前正在生產(chǎn)中的先進(jìn)3D芯片的9微米間距,歐洲微電子研究中心的2微米間距是巨大的進(jìn)步。而且比前一代技術(shù)(間距幾十微米的焊料“微凸塊”)有了更大的飛躍。

“使用現(xiàn)有設(shè)備,將晶圓與晶圓對(duì)齊比將芯片與晶圓對(duì)齊更容易。大多數(shù)微電子工藝都是為(整片)晶圓設(shè)計(jì)的。”法國(guó)研究機(jī)構(gòu)CEA Leti的集成與封裝科學(xué)負(fù)責(zé)人簡(jiǎn)-查爾斯?蘇里奧(Jean-Charles Souriau)說(shuō)。但晶圓上芯片(CoW,或晶圓上裸芯片)技術(shù)正在高端處理器中大放異彩,如在AMD處理器中,這項(xiàng)技術(shù)被用于組裝其新型中央處理器(CPU)和人工智能加速器中的計(jì)算核心和緩存。

在這兩種場(chǎng)景中,為了進(jìn)一步縮小間距,研究人員致力于使表面更加平整、鍵合晶圓粘接更好,并減少整個(gè)工藝的時(shí)間和復(fù)雜度。如果做到這一點(diǎn),就可能會(huì)徹底改變芯片的設(shè)計(jì)方式。

ae595f10-e5c0-11ef-9310-92fbcf53809c.jpg

間距緊密的WoW

最近的晶圓上晶圓(WoW)研究實(shí)現(xiàn)了 360到500納米的最緊湊間距,這要求在平整度方面投入巨大的精力。要以100納米級(jí)的精度將兩片晶圓鍵合在一起,整片晶圓必須幾乎完全平整。即便晶圓有最輕微的彎曲或扭曲,整個(gè)部分也將無(wú)法連接。

平整晶圓的工作通過(guò)一種名為化學(xué)機(jī)械平坦化(CMP)的工藝完成。它對(duì)芯片制造至關(guān)重要,特別是對(duì)于生產(chǎn)晶體管上方的互連層。

“對(duì)于混合鍵合,化學(xué)機(jī)械平坦化是我們必須控制的一項(xiàng)關(guān)鍵參數(shù)?!碧K里奧說(shuō)。IEEE電子器件與技術(shù)大會(huì)上展示的結(jié)果表明,化學(xué)機(jī)械平坦化技術(shù)已提升到一個(gè)新水平,不僅能夠平整整個(gè)晶圓,還能夠減小銅焊片之間納米級(jí)的圓形絕緣層,確保更好的連接。

還有研究人員專注于確保這些平整的部件能夠牢固地粘在一起。他們嘗試使用不同的表面材料,如用硅碳氮化物代替硅氧化物,并采用不同的方案來(lái)對(duì)表面進(jìn)行化學(xué)激活。最初,晶圓或裸芯片被擠壓在一起時(shí),它們是通過(guò)相對(duì)較弱的氫鍵對(duì)接在一起的,人們擔(dān)心在后續(xù)工藝中它們無(wú)法保持原位。對(duì)接之后,晶圓和芯片會(huì)被慢慢加熱,在退火工藝中形成更強(qiáng)的化學(xué)鍵。這些鍵的強(qiáng)度如何(以及如何確定這一點(diǎn))是IEEE電子器件與技術(shù)大會(huì)上展示的主要研究?jī)?nèi)容。

最終的鍵合強(qiáng)度有一部分來(lái)自銅連接。退火步驟使銅在間隙中膨脹,形成導(dǎo)電橋。三星的韓勝浩解釋說(shuō),控制這個(gè)間隙的大小是關(guān)鍵。如果膨脹過(guò)少,銅將無(wú)法熔化形成連接;而如果膨脹過(guò)多,晶圓將被推開(kāi)。這是納米級(jí)的問(wèn)題。韓勝浩報(bào)告了一種新的化學(xué)工藝研究,即每次蝕刻去除單一原子層的銅,他希望通過(guò)這種工藝實(shí)現(xiàn)精確控制。

連接的質(zhì)量也很重要。芯片互連中的金屬不是單晶體,而是由許多顆粒組成的,顆粒朝向不同方向。即使銅膨脹后,金屬的顆粒邊界通常也不會(huì)從一側(cè)跨越到另一側(cè)。這種跨越應(yīng)該會(huì)降低連接的電阻并提高其可靠性。日本東北大學(xué)的研究人員報(bào)告了一種新的冶金方案,最終可以生成跨越邊界的大型單銅顆粒?!斑@是一次重大變化?!比毡緰|北大學(xué)副教授福島磯村說(shuō),“我們現(xiàn)在正在分析其背后的原因?!?/p>

IEEE電子器件與技術(shù)大會(huì)上討論的其他實(shí)驗(yàn)側(cè)重如何簡(jiǎn)化鍵合工藝。有幾項(xiàng)實(shí)驗(yàn)試圖降低形成鍵合所需的退火溫度(通常在300℃左右),將長(zhǎng)時(shí)間加熱對(duì)芯片造成的損害風(fēng)險(xiǎn)降到最小。應(yīng)用材料公司的研究人員介紹了一種大幅縮短退火時(shí)間(從幾個(gè)小時(shí)縮短到5分鐘)的方法以及在這方面取得的進(jìn)展。

表現(xiàn)出色的CoW

目前,CoW混合鍵合對(duì)新型中央處理器和圖形處理器制造商更加有用:芯片制造商可通過(guò)這項(xiàng)技術(shù)堆疊不同尺寸的芯片,并在芯片相互鍵合之前對(duì)每塊芯片進(jìn)行測(cè)試,確保不會(huì)因?yàn)閱蝹€(gè)缺陷部件而毀掉整塊昂貴的中央處理器。

CoW面臨著WoW所面臨的全部困難,但可選擇的緩解辦法卻更少。例如,化學(xué)機(jī)械平坦化工藝用于平整晶圓,而不是單個(gè)裸芯片,一旦裸芯片從源晶圓中切割下來(lái)并測(cè)試,便沒(méi)有多少辦法可以改進(jìn)其鍵合準(zhǔn)備了。

不過(guò),英特爾的研究人員報(bào)告了具有3微米間距的CoW混合鍵合,同時(shí),如上文提到的,歐洲微電子研究中心團(tuán)隊(duì)實(shí)現(xiàn)了2微米間距,實(shí)現(xiàn)方式為:在中間過(guò)程仍將裸芯片附著在晶圓上,使其變得非常平整,同時(shí)在整個(gè)過(guò)程中保持裸芯片的清潔。兩個(gè)團(tuán)隊(duì)都使用了等離子體蝕刻技術(shù)來(lái)切割裸芯片,而不是常用的專用刀片。等離子體蝕刻不會(huì)像刀片那樣導(dǎo)致邊緣碎裂,碎裂產(chǎn)生的碎片可能會(huì)干擾連接。歐洲微電子研究中心團(tuán)隊(duì)還可通過(guò)這項(xiàng)技術(shù)改變裸芯片的形狀,制作倒角,減輕可能破壞連接的機(jī)械應(yīng)力。

ae731a22-e5c0-11ef-9310-92fbcf53809c.jpg

多位參加IEEE電子器件與技術(shù)大會(huì)的研究人員認(rèn)為,CoW混合鍵合對(duì)未來(lái)的高帶寬內(nèi)存(HBM)至關(guān)重要。高帶寬內(nèi)存由多塊動(dòng)態(tài)隨機(jī)存取存儲(chǔ)器(DRAM)裸芯片堆疊而成,目前有8到12層高,置于一塊控制邏輯芯片之上。它通常與高端圖形處理器放在同一封裝內(nèi),對(duì)于處理ChatGPT等大語(yǔ)言模型所需的海量數(shù)據(jù)至關(guān)重要。今天的高帶寬內(nèi)存裸芯片堆疊采用的是微凸塊技術(shù),兩層之間有被有機(jī)填料包裹的小焊球。

隨著人工智能進(jìn)一步提高內(nèi)存需求,動(dòng)態(tài)隨機(jī)存取存儲(chǔ)器制造商希望在高帶寬內(nèi)存芯片中堆疊20層,甚至是更多層。微凸塊的體積會(huì)占用空間,這意味著這些堆疊很快將因太高而無(wú)法與圖形處理器一起封裝。在這方面,混合鍵合可以降低高帶寬內(nèi)存的高度,同時(shí)比較容易減少封裝中的余熱,因?yàn)閷优c層之間的熱阻會(huì)減少。

在IEEE電子器件與技術(shù)大會(huì)上,三星工程師展示了混合鍵合可以實(shí)現(xiàn)的16層堆疊的高帶寬內(nèi)存。三星高級(jí)工程師李賢民表示:“我認(rèn)為使用這項(xiàng)技術(shù)可以實(shí)現(xiàn)超過(guò)20層的堆疊。”其他CoW新技術(shù)也可以幫助將混合鍵合應(yīng)用于高帶寬內(nèi)存。蘇里奧說(shuō),CEA Leti的研究人員正在探索自對(duì)齊技術(shù)。這將助于確保僅通過(guò)化學(xué)工藝實(shí)現(xiàn)良好的CoW連接。每個(gè)表面的一部分被制成疏水性,另一部分為親水性,從而使表面自動(dòng)滑入到位。

ae815a88-e5c0-11ef-9310-92fbcf53809c.jpg

在IEEE電子器件與技術(shù)大會(huì)上,來(lái)自日本東北大學(xué)和雅馬哈機(jī)器人公司的研究人員報(bào)告了類(lèi)似的方案,在動(dòng)態(tài)隨機(jī)存取存儲(chǔ)器實(shí)驗(yàn)芯片上,利用水的表面張力對(duì)齊的5微米焊片實(shí)現(xiàn)了優(yōu)于50納米的精度。

混合鍵合的邊界

研究人員幾乎肯定會(huì)繼續(xù)縮小混合鍵合連接的間距。臺(tái)灣積體電路制造公司(以下簡(jiǎn)稱臺(tái)積電)的開(kāi)拓系統(tǒng)項(xiàng)目經(jīng)理賈漢中(Han?Jong Chia,音)在IEEE電子器件與技術(shù)大會(huì)上表示,200納米的WoW間距不僅是可能的,而且是可取的。臺(tái)積電計(jì)劃在兩年內(nèi)引入一種名為“背面供電”的技術(shù)。(英特爾計(jì)劃在2024年底引入)。這項(xiàng)技術(shù)將芯片粗大的電源傳輸互連放置在硅表面下方,而不是上方。臺(tái)積電研究人員通過(guò)計(jì)算得出,沒(méi)有了這些電源管道,最上層可以更好地連接較小的混合鍵合焊片。采用200納米鍵合焊片的背面供電裝置將大幅降低3D連接的電容,通過(guò)測(cè)量,其能效和信號(hào)速度將達(dá)到使用400納米鍵合焊片時(shí)的8倍。

賈漢中表示,如果鍵合間距進(jìn)一步縮小,未來(lái)可能會(huì)實(shí)現(xiàn)跨越兩片晶圓的“折疊”電路塊。這樣,當(dāng)電路塊內(nèi)的一些長(zhǎng)連接就可以走垂直捷徑,有助于提高計(jì)算速度并降低功耗。

混合鍵合可能不僅限于硅。CEA Leti的蘇里奧表示:“當(dāng)下,我們?cè)凇鑼?duì)硅晶圓’上取得了很大發(fā)展,不過(guò)我們也在探索氮化鎵和硅晶圓以及玻璃晶圓之間……以及所有材料之間的混合鍵合?!彼诘臋C(jī)構(gòu)甚至介紹了用于量子計(jì)算芯片的混合鍵合研究,其中涉及對(duì)超導(dǎo)鈮而不是銅進(jìn)行對(duì)齊和鍵合。

“很難說(shuō)研究邊界在哪里,一切都在飛快發(fā)展?!碧K里奧說(shuō)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 芯片
    +關(guān)注

    關(guān)注

    460

    文章

    52520

    瀏覽量

    441039
  • 3D
    3D
    +關(guān)注

    關(guān)注

    9

    文章

    2959

    瀏覽量

    110780
  • 摩爾定律
    +關(guān)注

    關(guān)注

    4

    文章

    640

    瀏覽量

    79875

原文標(biāo)題:銅連接 — 混合鍵合也許能拯救摩爾定律

文章出處:【微信號(hào):深圳市賽姆烯金科技有限公司,微信公眾號(hào):深圳市賽姆烯金科技有限公司】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    LG電子重兵布局混合設(shè)備研發(fā),鎖定2028年大規(guī)模量產(chǎn)目標(biāo)

    ,正逐漸成為提升芯片性能與集成度的關(guān)鍵手段,LG 電子的加入有望為該領(lǐng)域帶來(lái)新的活力與變革。 混合技術(shù)通過(guò)對(duì)、介質(zhì)對(duì)介質(zhì)的直接
    的頭像 發(fā)表于 07-15 17:48 ?150次閱讀

    混合(Hybrid Bonding)工藝介紹

    所謂混合(hybrid bonding),指的是將兩片以上不相同的WaferDie通過(guò)金屬互連的混合
    的頭像 發(fā)表于 07-10 11:12 ?207次閱讀
    <b class='flag-5'>混合</b><b class='flag-5'>鍵</b><b class='flag-5'>合</b>(Hybrid Bonding)工藝介紹

    從微米到納米,-混合重塑3D封裝技術(shù)格局

    動(dòng)力。 ? 據(jù)資料顯示,這項(xiàng)技術(shù)通過(guò)將金屬與介電層工藝結(jié)合,實(shí)現(xiàn)了亞微米級(jí)的垂直互連,使芯片堆疊密度提升兩個(gè)數(shù)量級(jí),為突破
    發(fā)表于 06-29 22:05 ?950次閱讀

    混合工藝介紹

    所謂混合(hybrid bonding),指的是將兩片以上不相同的WaferDie通過(guò)金屬互連的混合
    的頭像 發(fā)表于 06-03 11:35 ?699次閱讀
    <b class='flag-5'>混合</b><b class='flag-5'>鍵</b><b class='flag-5'>合</b>工藝介紹

    混合市場(chǎng)空間巨大,這些設(shè)備有機(jī)會(huì)迎來(lái)爆發(fā)

    屬直接的先進(jìn)封裝技術(shù),其核心目標(biāo)是實(shí)現(xiàn)芯片間高密度、低電阻的垂直互聯(lián)。 ? 在工藝過(guò)程,需要經(jīng)過(guò)對(duì)準(zhǔn)和、后
    的頭像 發(fā)表于 06-03 09:02 ?1775次閱讀

    電力電子的“摩爾定律”(1)

    本文是第二屆電力電子科普征文大賽的獲獎(jiǎng)作品,來(lái)自上??萍即髮W(xué)劉賾源的投稿。著名的摩爾定律中指出,集成電路每過(guò)一定時(shí)間就會(huì)性能翻倍,成本減半。那么電力電子當(dāng)中是否也存在著摩爾定律呢?1965年,英特爾
    的頭像 發(fā)表于 05-10 08:32 ?258次閱讀
    電力電子<b class='flag-5'>中</b>的“<b class='flag-5'>摩爾定律</b>”(1)

    瑞沃微先進(jìn)封裝:突破摩爾定律枷鎖,助力半導(dǎo)體新飛躍

    在半導(dǎo)體行業(yè)的發(fā)展歷程,技術(shù)創(chuàng)新始終是推動(dòng)行業(yè)前進(jìn)的核心動(dòng)力。深圳瑞沃微半導(dǎo)體憑借其先進(jìn)封裝技術(shù),用強(qiáng)大的實(shí)力和創(chuàng)新理念,立志將半導(dǎo)體行業(yè)邁向新的高度。 回溯半導(dǎo)體行業(yè)的發(fā)展軌跡,摩爾定律無(wú)疑是一個(gè)重要的里程碑
    的頭像 發(fā)表于 03-17 11:33 ?436次閱讀
    瑞沃微先進(jìn)封裝:突破<b class='flag-5'>摩爾定律</b>枷鎖,助力半導(dǎo)體新飛躍

    全球首臺(tái),獨(dú)立研發(fā)!新一代C2W&amp;amp;W2W混合設(shè)備即將震撼發(fā)布!

    制程工藝逼近1nm物理極限,摩爾定律的延續(xù)面臨巨大挑戰(zhàn)。行業(yè)亟需通過(guò)“延續(xù)摩爾”(More Moore)與“超越摩爾”(More than Moore)兩條路徑尋找新突破。無(wú)論是3D堆疊技術(shù)提升集成密度,還是異質(zhì)芯片集成拓展功能
    發(fā)表于 03-06 14:42 ?325次閱讀
    全球首臺(tái),獨(dú)立研發(fā)!新一代C2W&amp;amp;W2W<b class='flag-5'>混合</b><b class='flag-5'>鍵</b><b class='flag-5'>合</b>設(shè)備即將震撼發(fā)布!

    閃存沖擊400層+,混合技術(shù)傳來(lái)消息

    將兩片已經(jīng)加工完畢的晶圓直接合在一起。這項(xiàng)技術(shù)通過(guò)直接將兩片晶圓貼合,省去了傳統(tǒng)的凸點(diǎn)連接,從而縮短了電氣路徑,提高了性能和散熱能力,同時(shí)優(yōu)化了生產(chǎn)效率,是目前混合
    發(fā)表于 02-27 01:56 ?722次閱讀
    閃存沖擊400層+,<b class='flag-5'>混合</b><b class='flag-5'>鍵</b><b class='flag-5'>合</b>技術(shù)傳來(lái)消息

    Cu-Cu混合的原理是什么

    本文介紹了Cu-Cu混合主要用在哪方面以及原理是什么。
    的頭像 發(fā)表于 02-26 17:35 ?723次閱讀
    Cu-Cu<b class='flag-5'>混合</b><b class='flag-5'>鍵</b><b class='flag-5'>合</b>的原理是什么

    石墨烯互連技術(shù):延續(xù)摩爾定律的新希望

    半導(dǎo)體行業(yè)長(zhǎng)期秉持的摩爾定律(該定律規(guī)定芯片上的晶體管密度大約每?jī)赡陸?yīng)翻一番)越來(lái)越難以維持??s小晶體管及其間互連的能力正遭遇一些基本的物理限制。特別是,當(dāng)互連按比例縮小時(shí),其電阻率急劇上升,這會(huì)
    的頭像 發(fā)表于 01-09 11:34 ?582次閱讀

    摩爾定律是什么 影響了我們哪些方面

    摩爾定律是由英特爾公司創(chuàng)始人戈登·摩爾提出的,它揭示了集成電路上可容納的晶體管數(shù)量大約每18-24個(gè)月增加一倍的趨勢(shì)。該定律不僅推動(dòng)了計(jì)算機(jī)硬件的快速發(fā)展,也對(duì)多個(gè)領(lǐng)域產(chǎn)生了深遠(yuǎn)影響。
    的頭像 發(fā)表于 01-07 18:31 ?1398次閱讀

    先進(jìn)封裝技術(shù)激戰(zhàn)正酣:混合合成新星,重塑芯片領(lǐng)域格局

    隨著摩爾定律的放緩與面臨微縮物理極限,半導(dǎo)體巨擘越來(lái)越依賴先進(jìn)封裝技術(shù)推動(dòng)性能的提升。隨著封裝技術(shù)從2D向2.5D、3D推進(jìn),芯片堆迭的連接技術(shù)也成為各家公司差異化與競(jìng)爭(zhēng)力的展現(xiàn)。而“混合
    的頭像 發(fā)表于 11-08 11:00 ?1324次閱讀

    混合的基本原理和優(yōu)勢(shì)

    混合(Hybrid Bonding)是半導(dǎo)體封裝領(lǐng)域的新興技術(shù),能夠?qū)崿F(xiàn)高密度三維集成,無(wú)需傳統(tǒng)的焊料凸點(diǎn)。本文探討混合
    的頭像 發(fā)表于 10-30 09:54 ?2630次閱讀
    <b class='flag-5'>混合</b><b class='flag-5'>鍵</b><b class='flag-5'>合</b>的基本原理和優(yōu)勢(shì)

    混合,成為“芯”寵

    隨著摩爾定律逐漸進(jìn)入其發(fā)展軌跡的后半段,芯片產(chǎn)業(yè)越來(lái)越依賴先進(jìn)的封裝技術(shù)來(lái)推動(dòng)性能的飛躍。在封裝技術(shù)由平面走向更高維度的2.5D和3D時(shí),互聯(lián)技術(shù)成為關(guān)鍵的關(guān)鍵。面對(duì)3D封裝日益增長(zhǎng)的復(fù)雜性和性能
    的頭像 發(fā)表于 10-18 17:54 ?1060次閱讀
    <b class='flag-5'>混合</b><b class='flag-5'>鍵</b><b class='flag-5'>合</b>,成為“芯”寵