一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

一文看懂人工智能里的機器學(xué)習(xí)與深度學(xué)習(xí)

電子工程師 ? 作者:工程師a ? 2018-05-12 09:12 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

人工智能(Artificial Intelligence),英文縮寫為AI。AI是一門讓機器變得智能的科學(xué)研究,讓機器像人類一樣具備解決某些特定問題的能力。其實,AI可不是什么新事物,早在上世紀中葉就已經(jīng)誕生了。1950年,一位名叫馬文﹒明斯基的大四學(xué)生和同學(xué)一起建造了世界上第一臺神經(jīng)網(wǎng)絡(luò)計算機,被看作是人工智能的起點。馬文后來也被人稱為“人工智能之父”,從那時到現(xiàn)在已經(jīng)過了近70年。這些年AI技術(shù)一直不溫不火,偶爾出現(xiàn)一些吸引人的技術(shù),很快就消失殆盡了。直到最近,AI又重新回到人們的視線里,而且獲得了幾乎所有互聯(lián)網(wǎng)大佬的青睞,將AI看作是未來技術(shù)發(fā)展的方向,并投入大量人力和資金去研究它。

AI之所以到現(xiàn)在才火爆起來是有原因的。早在70年前,計算機技術(shù)剛出現(xiàn),計算能力和傳感器技術(shù)都不發(fā)達,AI的理念雖然先進,卻無實施的條件。眾所周知,讓機器具備學(xué)習(xí)的能力,要進行大量的學(xué)習(xí)計算,通過對已掌握的數(shù)據(jù)計算規(guī)律,從而知曉下一步該如何處理。甄別和計算數(shù)據(jù)的能力在70年前都不具備,所以AI技術(shù)的研究總是被擱淺。而現(xiàn)在則不同,云計算、虛擬化和大數(shù)據(jù)技術(shù)的出現(xiàn),對數(shù)據(jù)的分析能力已經(jīng)很強,再加上計算能力的提升,海量數(shù)據(jù)的計算數(shù)秒內(nèi)就能完成,這給AI提供了良好的成長土壤,所以到了現(xiàn)在,AI不火都不行了。

AI只是一門技術(shù)的概念,最終還是要靠各種具體技術(shù)來實現(xiàn),機器學(xué)習(xí)(Machine Learning)就是其中之一。

ML使用算法分析數(shù)據(jù),從中學(xué)習(xí)并做出推斷或預(yù)測。ML使用大量數(shù)據(jù)和算法來“訓(xùn)練”機器,由此讓機器學(xué)會如何去完成任務(wù)。比如在圖像識別中,一開始機器在識別事物的時候準確率是比較差的,機器的表現(xiàn)帶有很大隨機性,但是經(jīng)過一段時間訓(xùn)練,隨著我們給機器看的圖像越來越多,機器的圖像識別準確性會逐步提高。當(dāng)學(xué)習(xí)的圖片積累到一定數(shù)量的時候,我們可以對于某一種動物拍一張照片,這張照片是以前機器學(xué)習(xí)沒有看到的,但當(dāng)我們顯示這張照片,機器可以根據(jù)以往的經(jīng)驗準確地識別出這是哪一種動物。

ML背后的核心思想是,設(shè)計程序使得它可以在執(zhí)行的時候提升它在某任務(wù)上的能力,而不是有著固定行為的程序。

ML包括多種問題定義,提供很多不同算法,能解決不同領(lǐng)域的各種問題,ML利用數(shù)據(jù)來解決簡單規(guī)則不能或者難以解決的問題,被廣泛應(yīng)用在了搜索引擎、無人駕駛、機器翻譯、醫(yī)療診斷、垃圾郵件過濾、玩游戲、人臉識別、數(shù)據(jù)匹配、信用評級和給圖片加濾鏡等任務(wù)中。

深度學(xué)習(xí)(Deep Learning)是一種實現(xiàn)ML的技術(shù),是當(dāng)前AI技術(shù)中非?;鸬脑掝},由Hinton等人于2006年提出,基于深度置信網(wǎng)絡(luò)提出非監(jiān)督貪心逐層訓(xùn)練算法。

DL也稱為深度結(jié)構(gòu)學(xué)習(xí),層次學(xué)習(xí)或者深度機器學(xué)習(xí),是一類算法集合。DL利用多層神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),從大數(shù)據(jù)中學(xué)習(xí)現(xiàn)實世界中各類事物能直接用于計算機計算的表示形式,被認為是智能機器可能的“大腦結(jié)構(gòu)”。

DL本身是神經(jīng)網(wǎng)絡(luò)算法的衍生,在圖像,語音等富媒體的分類和識別上取得了非常好的效果,所以各大研究機構(gòu)和公司都投入了大量人力來做相關(guān)研究和開發(fā)。DL重點在于如何快速地訓(xùn)練模型。通過DL,機器可以處理大量數(shù)據(jù),識別復(fù)雜的模式,并提出深入的見解。DL有幾個有名的技術(shù)框架:tensorflow 谷歌、CNTK 微軟、Theano、caffe Berkeley、scikit-learn Python,AlphaGo就是使用了TensorFlow的杰出作品,AlphaGo 完虐李世乭,直接將DL帶火了。我們?nèi)粘5囊恍┩扑托侣勝徫锏?,都有DL的影子。

之所以DL能火,最為主要的原因是準確性,DL模式可以達到前所未有的精確度,有時甚至超過人類表現(xiàn),讓人類都感覺到可怕,未來人類會不會被DL所創(chuàng)造的機器人打敗并消滅掉。如果是那樣,人類真的是搬起石頭砸自己的腳。其實,這種想法的人實屬多慮了,DL的學(xué)習(xí)能力的確可能超過人類大腦,但所有的學(xué)習(xí)能力都是人類賦予的,自然有控制的方法。

ML和DL都是AI的具體技術(shù)實現(xiàn)形式,但兩者區(qū)別明顯。

DL是ML的技術(shù)之一,ML包含DL,但DL的技術(shù)更優(yōu)于ML,ML更是一種通用型的技術(shù),包括決策樹、貝葉斯、支持向量機等算法,也包括神經(jīng)網(wǎng)絡(luò)算法。而DL深耕神經(jīng)網(wǎng)絡(luò),是深度神經(jīng)網(wǎng)絡(luò)算法技術(shù),包括深度卷積網(wǎng)絡(luò)、深度循環(huán)網(wǎng)絡(luò)、遞歸網(wǎng)絡(luò)等。

ML和DL都提供了訓(xùn)練模型和分類數(shù)據(jù)方法,但ML需要手動選擇圖像的相關(guān)特征,以訓(xùn)練機器學(xué)習(xí)模型,DL可以從圖像中自動提取相關(guān)功能,是一種端到端的學(xué)習(xí),網(wǎng)絡(luò)被賦予原始數(shù)據(jù)和分類等任務(wù)并自動完成;如果沒有高性能GPU和標記數(shù)據(jù),那么ML和DL更具優(yōu)勢。這是因為DL通常比較復(fù)雜,就圖像而言可能需要幾千張圖才能獲得可靠的結(jié)果。高性能的GPU才能夠?qū)崿F(xiàn)快速計算,在建模上花更少時間來分析所有圖像,DL計算量更大;ML由手工設(shè)計特征決定學(xué)習(xí)效果,但是特征工程非常繁瑣,而DL能夠從大數(shù)據(jù)中自動學(xué)習(xí)特征;當(dāng)解決問題時,ML會將問題分解為多個子問題并逐個子問題解決,最后結(jié)合所有子問題的結(jié)果獲得最終結(jié)果,DL提倡直接的端到端解決問題。ML比較擅長分析維度較低,可解釋性很強的任務(wù)。DL擅長分析高維度的數(shù)據(jù)。比如圖像、語音等,兩者應(yīng)用的領(lǐng)域會有差別。

ML和DL是AI領(lǐng)域最先進的技術(shù),尤其是DL,代表了當(dāng)今AI技術(shù)發(fā)展的方向,將有越來越多的產(chǎn)品采用DL技術(shù),不過兩者應(yīng)用的領(lǐng)域不同,對于數(shù)據(jù)量較少,計算能力不高的領(lǐng)域,ML依然可以繼續(xù)發(fā)揮技術(shù)優(yōu)勢,兩種技術(shù)將長期同時存在著。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1806

    文章

    49011

    瀏覽量

    249347
  • 機器學(xué)習(xí)
    +關(guān)注

    關(guān)注

    66

    文章

    8502

    瀏覽量

    134589
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122789
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    最新人工智能硬件培訓(xùn)AI 基礎(chǔ)入門學(xué)習(xí)課程參考2025版(大模型篇)

    人工智能大模型重塑教育與社會發(fā)展的當(dāng)下,無論是探索未來職業(yè)方向,還是更新技術(shù)儲備,掌握大模型知識都已成為新時代的必修課。從職場上輔助工作的智能助手,到課堂用于學(xué)術(shù)研究的智能工具,大模型正在工作生活
    發(fā)表于 07-04 11:10

    SLAMTEC Aurora:把深度學(xué)習(xí)“卷”進機器人日常

    人工智能機器人技術(shù)飛速發(fā)展的今天,深度學(xué)習(xí)與SLAM(同步定位與地圖構(gòu)建)技術(shù)的結(jié)合,正引領(lǐng)著智能
    的頭像 發(fā)表于 02-19 15:49 ?456次閱讀

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機遇

    人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢,導(dǎo)致戰(zhàn)爭形式和模式發(fā)生重大變
    的頭像 發(fā)表于 02-14 11:15 ?535次閱讀

    數(shù)學(xué)專業(yè)轉(zhuǎn)人工智能方向:考研/就業(yè)前景分析及大學(xué)四年學(xué)習(xí)路徑全揭秘

    隨著AI技術(shù)的不斷進步,專業(yè)人才的需求也日益增長。數(shù)學(xué)作為AI的基石,為機器學(xué)習(xí)、深度學(xué)習(xí)、數(shù)據(jù)分析等提供了理論基礎(chǔ)和工具,因此越來越多的數(shù)學(xué)專業(yè)學(xué)生開始考慮在
    的頭像 發(fā)表于 02-07 11:14 ?1102次閱讀
    數(shù)學(xué)專業(yè)轉(zhuǎn)<b class='flag-5'>人工智能</b>方向:考研/就業(yè)前景分析及大學(xué)四年<b class='flag-5'>學(xué)習(xí)</b>路徑全揭秘

    人工智能機器學(xué)習(xí)以及Edge AI的概念與應(yīng)用

    人工智能相關(guān)各種技術(shù)的概念介紹,以及先進的Edge AI(邊緣人工智能)的最新發(fā)展與相關(guān)應(yīng)用。 人工智能機器學(xué)習(xí)是現(xiàn)代科技的核心技術(shù)
    的頭像 發(fā)表于 01-25 17:37 ?929次閱讀
    <b class='flag-5'>人工智能</b>和<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>以及Edge AI的概念與應(yīng)用

    如何在低功耗MCU上實現(xiàn)人工智能機器學(xué)習(xí)

    人工智能 (AI) 和機器學(xué)習(xí) (ML) 的技術(shù)不僅正在快速發(fā)展,還逐漸被創(chuàng)新性地應(yīng)用于低功耗的微控制器 (MCU) 中,從而實現(xiàn)邊緣AI/ML的解決方案。
    的頭像 發(fā)表于 12-17 16:06 ?863次閱讀

    人工智能工程師高頻面試題匯總——機器學(xué)習(xí)

    隨著人工智能技術(shù)的突飛猛進,AI工程師成為了眾多求職者夢寐以求的職業(yè)。想要拿下這份工作,面試的時候得展示出你不僅技術(shù)過硬,還得能解決問題。所以,提前準備些面試常問的問題,比如機器學(xué)習(xí)
    的頭像 發(fā)表于 12-04 17:00 ?1535次閱讀
    <b class='flag-5'>人工智能</b>工程師高頻面試題匯總——<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>篇

    NPU與機器學(xué)習(xí)算法的關(guān)系

    人工智能領(lǐng)域,機器學(xué)習(xí)算法是實現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對計算資源的需求也在不斷增長。NPU作為種專門為
    的頭像 發(fā)表于 11-15 09:19 ?1212次閱讀

    嵌入式和人工智能究竟是什么關(guān)系?

    人工智能的結(jié)合,無疑是科技發(fā)展中的場革命。在人工智能硬件加速中,嵌入式系統(tǒng)以其獨特的優(yōu)勢和重要性,發(fā)揮著不可或缺的作用。通過深度學(xué)習(xí)和神
    發(fā)表于 11-14 16:39

    NPU在深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動力之,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為
    的頭像 發(fā)表于 11-14 15:17 ?1903次閱讀

    具身智能機器學(xué)習(xí)的關(guān)系

    (如機器人、虛擬代理等)通過與物理世界或虛擬環(huán)境的交互來獲得、發(fā)展和應(yīng)用智能的能力。這種智能不僅包括認知和推理能力,還包括感知、運動控制和環(huán)境適應(yīng)能力。具身智能強調(diào)
    的頭像 發(fā)表于 10-27 10:33 ?1047次閱讀

    人工智能、機器學(xué)習(xí)深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中個很大的子集是機器學(xué)習(xí)——讓算法從數(shù)據(jù)中
    發(fā)表于 10-24 17:22 ?2974次閱讀
    <b class='flag-5'>人工智能</b>、<b class='flag-5'>機器</b><b class='flag-5'>學(xué)習(xí)</b>和<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第二章AI for Science的技術(shù)支撐學(xué)習(xí)心得

    人工智能在科學(xué)研究中的核心技術(shù),包括機器學(xué)習(xí)、深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)等。這些技術(shù)構(gòu)成了AI for Science的基石,使得AI能夠處理和分析
    發(fā)表于 10-14 09:16

    《AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第人工智能驅(qū)動的科學(xué)創(chuàng)新學(xué)習(xí)心得

    人工智能:科學(xué)研究的加速器 第章清晰地闡述了人工智能作為科學(xué)研究工具的強大功能。通過機器學(xué)習(xí)、深度
    發(fā)表于 10-14 09:12

    FPGA在人工智能中的應(yīng)用有哪些?

    FPGA(現(xiàn)場可編程門陣列)在人工智能領(lǐng)域的應(yīng)用非常廣泛,主要體現(xiàn)在以下幾個方面: 深度學(xué)習(xí)加速 訓(xùn)練和推理過程加速:FPGA可以用來加速深度
    發(fā)表于 07-29 17:05