一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

IQ測(cè)試是否能測(cè)量AI的推理能力?

mK5P_AItists ? 來(lái)源:未知 ? 作者:胡薇 ? 2018-07-17 14:33 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

阿基米德基于對(duì)物體體積的抽象理解,悟到了物體的體積與物體浮力之間的關(guān)系。這就是抽象推理的魔力?;?a href="http://www.www27dydycom.cn/tags/神經(jīng)網(wǎng)絡(luò)/" target="_blank">神經(jīng)網(wǎng)絡(luò)機(jī)器學(xué)習(xí)模型取得了驚人的成績(jī),但是測(cè)量其推理抽象概念的能力卻是非常困難的。雖然人工智能已經(jīng)可以在策略游戲的對(duì)戰(zhàn)中戰(zhàn)勝人類(lèi),但是卻在一些簡(jiǎn)單任務(wù)方面“無(wú)能為力”,特別是需要在新環(huán)境中發(fā)現(xiàn)并重新構(gòu)建抽象概念。

舉個(gè)例子,如果你只訓(xùn)練AI計(jì)算三角形的屬性,那么,你訓(xùn)練的AI系統(tǒng)永遠(yuǎn)無(wú)法計(jì)算正方形或者其他沒(méi)有訓(xùn)練過(guò)的形狀的屬性。

又比如下邊這道簡(jiǎn)單的IQ測(cè)試題。

IQ測(cè)試給了DeepMind靈感,是不是也能用其測(cè)量AI的推理能力呢?

在以往解決通用學(xué)習(xí)系統(tǒng)努力的基礎(chǔ)上,DeepMind最新論文提出了一種如何測(cè)量機(jī)器模型認(rèn)知能力的方法,并表達(dá)了關(guān)于泛化的一些重要見(jiàn)解。

要構(gòu)建更好、更智能的系統(tǒng),使得神經(jīng)網(wǎng)絡(luò)能夠處理抽象概念,需要對(duì)其進(jìn)行改進(jìn)。

此方法的靈感來(lái)源于IQ測(cè)試。

創(chuàng)建抽象推理數(shù)據(jù)集

標(biāo)準(zhǔn)的人類(lèi)智商測(cè)試中,通常要求測(cè)試者通過(guò)應(yīng)用他們?nèi)粘=?jīng)驗(yàn)學(xué)習(xí)的原則來(lái)解釋感知上簡(jiǎn)單的視覺(jué)場(chǎng)景。

例如,人類(lèi)測(cè)試者可能已經(jīng)通過(guò)觀察植物或建筑物的增長(zhǎng),通過(guò)在數(shù)學(xué)課上學(xué)習(xí)加法,或通過(guò)跟蹤銀行余額獲取利息增長(zhǎng)的情況來(lái)了解“漸進(jìn)”(一些屬性能夠增加的概念)。

然后把這些感性認(rèn)識(shí)上升到理性認(rèn)識(shí),從而對(duì)測(cè)試題進(jìn)行推斷預(yù)測(cè),例如圖形的數(shù)量、大小,甚至沿著序列增加顏色強(qiáng)度。

現(xiàn)在機(jī)器學(xué)習(xí)仍然無(wú)法理解一些看似簡(jiǎn)單的“日常體驗(yàn)”,這意味著,人類(lèi)無(wú)法輕易地衡量AI將知識(shí)從現(xiàn)實(shí)世界轉(zhuǎn)移到視覺(jué)推理測(cè)試的能力。

基于此認(rèn)知,DeepMind設(shè)計(jì)一個(gè)實(shí)驗(yàn),希望使人類(lèi)視覺(jué)推理測(cè)試得到很好的利用。這一研究不是從日常生活到視覺(jué)推理問(wèn)題(如人類(lèi)測(cè)試)的知識(shí)轉(zhuǎn)移,而是研究知識(shí)從一組受控的視覺(jué)推理問(wèn)題轉(zhuǎn)移到另一組問(wèn)題。

為實(shí)現(xiàn)這一目標(biāo),DeepMind構(gòu)建了一個(gè)用于創(chuàng)建矩陣問(wèn)題的生成器,涉及一組抽象因子,包括“漸進(jìn)”之類(lèi)的關(guān)系以及“顏色”和“大小”等屬性。 雖然問(wèn)題生成器使用了一小組潛在因子,但它仍然會(huì)產(chǎn)生大量獨(dú)特的問(wèn)題。

接下來(lái),DeepMind約束生成器可用的因子或組合,以便創(chuàng)建用于訓(xùn)練和測(cè)試模型的不同問(wèn)題集,以度量模型可以推廣到留存的測(cè)試集的程度。

例如,創(chuàng)建了一組謎題訓(xùn)練集,其中只有在應(yīng)用于線條顏色時(shí)才會(huì)遇到漸進(jìn)關(guān)系,而在應(yīng)用于形狀大小時(shí)會(huì)遇到測(cè)試集。如果模型在該測(cè)試集上表現(xiàn)良好,它將提供推斷和應(yīng)用抽象概念的能力的證據(jù),即使在之前從未見(jiàn)過(guò)進(jìn)展的情況下也是如此。

有希望的抽象推理證據(jù)

在機(jī)器學(xué)習(xí)評(píng)估中應(yīng)用的典型的泛化機(jī)制中,訓(xùn)練和測(cè)試數(shù)據(jù)來(lái)自于相同的基礎(chǔ)分布,測(cè)試的所有網(wǎng)絡(luò)都表現(xiàn)出良好的泛化誤差,其中一些在略高于75%的情況下實(shí)現(xiàn)了令人印象深刻的絕對(duì)性能。性能最佳的網(wǎng)絡(luò)明確地計(jì)算了不同圖像面板之間的關(guān)系,并且并行地評(píng)估了每個(gè)潛在答案的適用性。DeepMind將此架構(gòu)稱(chēng)為Wild RelationNetwork(WReN)。

當(dāng)需要在先前看到的屬性值之間使用屬性值“插值”來(lái)推理,以及在不熟悉的組合中應(yīng)用已知的抽象關(guān)系時(shí),模型的泛化效果顯著。然而,在“外推”機(jī)制中,同樣的網(wǎng)絡(luò)表現(xiàn)得糟糕得多,在這種情況下,測(cè)試集中的屬性值并不與訓(xùn)練中看到的值處于相同的范圍內(nèi)。

這種事情發(fā)生在當(dāng)訓(xùn)練集中有深顏色的物體而測(cè)試集中是淺顏色的物體的謎題中。當(dāng)模型被訓(xùn)練來(lái)應(yīng)用以前所見(jiàn)的關(guān)系(比如形狀的數(shù)量)到一個(gè)新的屬性(如大小)時(shí),泛化性能也會(huì)更糟。

最后,當(dāng)訓(xùn)練模型不僅預(yù)測(cè)正確的答案,而且還預(yù)測(cè)答案的“原因”(即應(yīng)該考慮解決這個(gè)難題的特定關(guān)系和屬性)時(shí),DeepMind稱(chēng)觀察到了改進(jìn)的泛化性能。

有趣的是,在中性分割中(the neutral split),模型的準(zhǔn)確性與它推斷矩陣下正確關(guān)系的能力密切相關(guān):當(dāng)解釋正確時(shí),模型會(huì)選擇當(dāng)時(shí)正確的答案的概率為87%,但當(dāng)它的解釋錯(cuò)誤時(shí),性能下降到只有32%。這表明,當(dāng)模型正確地推斷出任務(wù)背后的抽象概念時(shí),能夠獲得更好的性能。

更微妙的泛化方法

目前的文獻(xiàn)關(guān)注于基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)方法的優(yōu)缺點(diǎn),通常是基于它們的能力或泛化的失敗。DeepMind的結(jié)果表明,得出關(guān)于泛化的普遍結(jié)論可能是沒(méi)有幫助的:測(cè)試的神經(jīng)網(wǎng)絡(luò)在某些泛化狀態(tài)下表現(xiàn)得很好,而在其他狀態(tài)下表現(xiàn)得很差。

它們的成功是由一系列因素決定的,包括所使用的模型的架構(gòu),以及模型是否被訓(xùn)練為其選擇的答案提供可解釋的“原因”。在幾乎所有的情況下,當(dāng)需要推斷出超出其經(jīng)驗(yàn)的輸入或處理完全陌生的屬性時(shí),系統(tǒng)表現(xiàn)很差;在這個(gè)至關(guān)重要的研究領(lǐng)域?yàn)槲磥?lái)的工作創(chuàng)造一個(gè)清晰的重點(diǎn)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103635
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    35164

    瀏覽量

    280002
  • DeepMind
    +關(guān)注

    關(guān)注

    0

    文章

    131

    瀏覽量

    11580

原文標(biāo)題:學(xué)界 | DeepMind想用IQ題測(cè)試AI的抽象思維能力,進(jìn)展還不錯(cuò)

文章出處:【微信號(hào):AItists,微信公眾號(hào):人工智能學(xué)家】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    AI推理的存儲(chǔ),看好SRAM?

    電子發(fā)燒友網(wǎng)報(bào)道(文/黃晶晶)近幾年,生成式AI引領(lǐng)行業(yè)變革,AI訓(xùn)練率先崛起,帶動(dòng)高帶寬內(nèi)存HBM一飛沖天。但我們知道AI推理的廣泛應(yīng)用才能推動(dòng)A
    的頭像 發(fā)表于 03-03 08:51 ?1693次閱讀
    <b class='flag-5'>AI</b><b class='flag-5'>推理</b>的存儲(chǔ),看好SRAM?

    信而泰×DeepSeek:AI推理引擎驅(qū)動(dòng)網(wǎng)絡(luò)智能診斷邁向 “自愈”時(shí)代

    DeepSeek-R1:強(qiáng)大的AI推理引擎底座DeepSeek是由杭州深度求索人工智能基礎(chǔ)技術(shù)研究有限公司開(kāi)發(fā)的新一代AI大模型。其核心優(yōu)勢(shì)在于強(qiáng)大的推理引擎
    發(fā)表于 07-16 15:29

    當(dāng)我問(wèn)DeepSeek AI爆發(fā)時(shí)代的FPGA是否重要?答案是......

    ,以減少數(shù)據(jù)傳輸?shù)皆贫说男枨螅档脱舆t和帶寬消耗。FPGA在邊緣計(jì)算中表現(xiàn)優(yōu)異,能夠?yàn)榍度胧皆O(shè)備提供高效的AI推理能力。 ? 實(shí)時(shí)應(yīng)用:在自動(dòng)駕駛、工業(yè)自動(dòng)化等需要實(shí)時(shí)數(shù)據(jù)處理的場(chǎng)景中,F(xiàn)PGA的低
    發(fā)表于 02-19 13:55

    AI大模型在汽車(chē)應(yīng)用中的推理、降本與可解釋性研究

    佐思汽研發(fā)布《2024-2025年AI大模型及其在汽車(chē)領(lǐng)域的應(yīng)用研究報(bào)告》。 推理能力成為大模型性能提升的驅(qū)動(dòng)引擎 2024下半年以來(lái),國(guó)內(nèi)外大模型公司紛紛推出推理模型,通過(guò)以CoT為
    的頭像 發(fā)表于 02-18 15:02 ?1238次閱讀
    <b class='flag-5'>AI</b>大模型在汽車(chē)應(yīng)用中的<b class='flag-5'>推理</b>、降本與可解釋性研究

    使用NVIDIA推理平臺(tái)提高AI推理性能

    NVIDIA推理平臺(tái)提高了 AI 推理性能,為零售、電信等行業(yè)節(jié)省了數(shù)百萬(wàn)美元。
    的頭像 發(fā)表于 02-08 09:59 ?722次閱讀
    使用NVIDIA<b class='flag-5'>推理</b>平臺(tái)提高<b class='flag-5'>AI</b><b class='flag-5'>推理</b>性能

    生成式AI推理技術(shù)、市場(chǎng)與未來(lái)

    (reasoning)能力,這一轉(zhuǎn)變將極大推動(dòng)上層應(yīng)用的發(fā)展。 紅杉資本近期指出,在可預(yù)見(jiàn)的未來(lái),邏輯推理推理時(shí)計(jì)算將是一個(gè)重要主題,并開(kāi)啟生成式AI的下一階段。新一輪競(jìng)賽已然開(kāi)始。
    的頭像 發(fā)表于 01-20 11:16 ?846次閱讀
    生成式<b class='flag-5'>AI</b><b class='flag-5'>推理</b>技術(shù)、市場(chǎng)與未來(lái)

    ads1282是否能采集單端信號(hào)?

    ads1282是否能采集單端信號(hào),有沒(méi)有相關(guān)資料。
    發(fā)表于 12-24 07:47

    請(qǐng)問(wèn)ADS1292R是否能通過(guò)兩電極同時(shí)獲取ECG和呼吸波?

    最近有個(gè)心電胸貼項(xiàng)目打算使用ADS1292R作為數(shù)據(jù)采集芯片,有個(gè)困惑是ADS1292R是否能通過(guò)兩電極同時(shí)采集心電數(shù)據(jù)和呼吸波數(shù)據(jù),如果,電路設(shè)計(jì)上需要什么特別的處理,謝謝!
    發(fā)表于 12-13 07:10

    DAC8551是否能實(shí)現(xiàn)低參考電壓下依舊保持較好的比例輸出?

    正在設(shè)計(jì)一款產(chǎn)品,原本采用DAC8551,在參考電壓很低的時(shí)候,輸出無(wú)法達(dá)到較好的比例輸出,現(xiàn)擬采用DAC8501,是否能實(shí)現(xiàn)低參考電壓下依舊保持較好的比例輸出?
    發(fā)表于 12-12 07:42

    74ALVC164245是否能支持速率為100Mbps的信號(hào)轉(zhuǎn)換呢?

    請(qǐng)幫忙確認(rèn)74ALVC164245是否能支持速率為100Mbps的信號(hào)轉(zhuǎn)換呢,Datasheet上并沒(méi)有找到明確的描述,謝謝!
    發(fā)表于 12-11 06:51

    ADS1299怎么測(cè)試是否能正常工作,直接給他上電看電流值是否可以?

    對(duì)于ADS1299的裸芯片而言,怎么測(cè)試是否能正常工作,直接給他上電看電流值是否可以。 目前我將ADS1299的所有引腳引出,并連上AVDD(5V),AVSS(0V),AGND(0V),DVDD
    發(fā)表于 11-27 06:17

    ADS1282是否能沿用ADS1256的引腳連接方式?

    地震勘探中,計(jì)劃將把原來(lái)的設(shè)計(jì)ADS1256與STM32連接,現(xiàn)在換用ADS1282,請(qǐng)問(wèn)是否能沿用ADS1256的引腳連接方式
    發(fā)表于 11-21 06:51

    DAC8568A和DAC8568C的代碼是否能通用?

    如題,DAC8568A和DAC8568C的代碼是否能通用?如果不通用,哪些地方需要做修改?謝謝
    發(fā)表于 11-14 06:06

    請(qǐng)問(wèn)TLV320AIC3256 mini DSP是否能實(shí)現(xiàn)降噪算法?

    我想做一款設(shè)備實(shí)現(xiàn)雙MIC 降噪,請(qǐng)問(wèn)TLV320AIC3256 mini DSP是否能實(shí)現(xiàn)降噪算法?如果不行,是否還有相近的芯片推薦
    發(fā)表于 10-24 08:01

    SDK里面是否能添加HPM5300系列芯片支持包?

    SDK里面是否能添加HPM5300系列芯片支持包?只發(fā)現(xiàn)板級(jí)支持包。
    發(fā)表于 09-27 10:01