一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

“躲避”or“鴨子”:看深度學(xué)習(xí)如何解釋多義詞

NVIDIA英偉達(dá) ? 來源:未知 ? 作者:工程師曾 ? 2018-09-22 15:02 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

脫離上下文時(shí),每個(gè)英文單詞都有多重含義。例如,“bank”可以指銀行或河岸;“Fair”可以指展覽會(huì),也可以指對(duì)展覽會(huì)的評(píng)價(jià);“Duck”可以是躲避傷害的動(dòng)作,也可以指鴨子。

對(duì)于人類來說搞清楚一個(gè)單詞在某場景中適用的含義是非常簡單的。但是,對(duì)于自然語言處理模型就是另一回事了。

近些年已經(jīng)出現(xiàn)很多用于解析文本的AI工具,但是當(dāng)涉及到多重含義的單詞時(shí),這些工具往往會(huì)陷入困境。來自艾倫人工智能研究所(Allen Institute for Artificial Intelligence)和華盛頓大學(xué)的研究人員正在努力解決這一難題,他們使用了可以根據(jù)上下文來確定英文單詞含義的神經(jīng)網(wǎng)絡(luò)。

向前和向后閱讀

通常,NLP模型通過詞向量(在每個(gè)單詞中附加語言含義和單詞語法的基礎(chǔ)元素)中的結(jié)構(gòu)化數(shù)據(jù)進(jìn)行訓(xùn)練。此算法基于假設(shè)每個(gè)單詞只有一種向量表示,但實(shí)際上英文單詞并非如此。

研究人員利用名為“ELMo”的神經(jīng)系統(tǒng)打破了這一假設(shè),此神經(jīng)系統(tǒng)可以為每個(gè)單詞創(chuàng)造出無限數(shù)量的向量。

“‘ELMo’是‘Embeddings from Language Models’的縮寫,而不是毛茸茸的紅色芝麻街角色”,論文“Deep contextualized word representations”的第一作者M(jìn)atthew Peters解釋道。

ELMo喜歡閱讀:這不是美國幼兒教育電視節(jié)目《芝麻街》中的Elmo,而是使用雙向語言模型的神經(jīng)系統(tǒng)ELMo。

常規(guī)語言模型嘗試預(yù)測(cè)句子中即將出現(xiàn)的下一個(gè)單詞。如果片段是“The people sat down on the …,”,那么算法將預(yù)測(cè)出“bench”或“grass”之類的單詞。為了給單詞附加所有潛在含義的詞向量,這個(gè)團(tuán)隊(duì)使用了雙向語言模型。

使用雙向模型意味著,該模型可以通過一個(gè)二次的回顧性算法,獲取句子的結(jié)尾并嘗試預(yù)測(cè)出現(xiàn)在句子結(jié)尾前邊的單詞。當(dāng)模型嘗試分析的單詞出現(xiàn)在句首,并且相關(guān)上下文隨即出現(xiàn)時(shí),這會(huì)非常有用。

“就像‘He lies to his teacher’與‘He lies on the sofa’這種情況”,Peters說道。

為測(cè)試ELMo的技能,該團(tuán)隊(duì)利用六種不同的NLP任務(wù)(包括情緒分析和問答等)對(duì)算法進(jìn)行測(cè)試。與之前使用相同訓(xùn)練數(shù)據(jù)的方法相比,ELMo每次都會(huì)得到更新、更出色的結(jié)果,在某些情況下可以比之前的領(lǐng)先模型提升25%的速度。

“在NLP中,很重要的一點(diǎn)是,單一的方法能夠提高多樣化任務(wù)的性能”,Peters指出。

ELMo在半監(jiān)督式學(xué)習(xí)領(lǐng)域大放異彩

在進(jìn)行自然語言處理時(shí),訓(xùn)練數(shù)據(jù)的類型非常關(guān)鍵。例如,問答系統(tǒng)使用的模型無法在任何舊文本上進(jìn)行訓(xùn)練。通常,此類模型需要在由帶標(biāo)注的問題和答案對(duì)組成的大型數(shù)據(jù)庫中訓(xùn)練,以學(xué)習(xí)如何做出正確的回答。

標(biāo)注數(shù)據(jù)非常耗時(shí)并且成本高昂。因此,研究人員首先選擇使用包含大約十億個(gè)單詞的大型無標(biāo)記學(xué)術(shù)數(shù)據(jù)庫來訓(xùn)練ELMo。然后,針對(duì)特定任務(wù)(例如問答)將此數(shù)據(jù)庫調(diào)整為一個(gè)帶標(biāo)注的小型數(shù)據(jù)庫。對(duì)于這種結(jié)合使用大量無標(biāo)記數(shù)據(jù)和一小部分已標(biāo)記數(shù)據(jù)的方法,統(tǒng)稱為“半監(jiān)督式學(xué)習(xí)”。

減少對(duì)已標(biāo)記和帶標(biāo)注數(shù)據(jù)的依賴后,研究人員可以更輕松地在現(xiàn)實(shí)問題中應(yīng)用其NLP模型應(yīng)用。

“在我們的示例中,我們選擇了一個(gè)未標(biāo)記的學(xué)術(shù)數(shù)據(jù)庫來訓(xùn)練語言模型”,Peters說道。但是研究人員能夠調(diào)整算法,以便在任何其他未標(biāo)記的數(shù)據(jù)庫中運(yùn)行該算法,也可以將其應(yīng)用于生物醫(yī)學(xué)論文、法律合同或其他語言等專業(yè)領(lǐng)域中。

與之前最先進(jìn)(SOTA)的基準(zhǔn)相比,ELMo在六個(gè)基準(zhǔn)NLP任務(wù)中都增強(qiáng)了神經(jīng)模型的性能。從左到右,這些任務(wù)依次是:語義推理、命名實(shí)體識(shí)別、問題回答、指代消解、語義角色標(biāo)注和情感分類。

研究人員通過Amazon Web Service,使用NVIDIA Tesla V100和K80 GPU助力訓(xùn)練和推理。

在后續(xù)論文中,研究人員指出其僅使用了幾百個(gè)已標(biāo)記示例,便可應(yīng)用ELMo模式回答幾何問題。人工需要花費(fèi)幾個(gè)小時(shí)便能完成此標(biāo)記工作,但卻會(huì)顯著提高NLP模型的性能。

ELMo已作為開源庫提供。Peters表示其他的NLP研究人員已經(jīng)將此模型應(yīng)用到了他們自己的工作中,包括除英語外的其他語言。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    35065

    瀏覽量

    279385
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3517

    瀏覽量

    50391
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122780

原文標(biāo)題:“躲避”or“鴨子”:看深度學(xué)習(xí)如何解釋多義詞

文章出處:【微信號(hào):NVIDIA_China,微信公眾號(hào):NVIDIA英偉達(dá)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    當(dāng)深度學(xué)習(xí)遇上嵌入式資源困境,特征空間如何破局?

    近年來,隨著人工智能(AI)技術(shù)的迅猛發(fā)展,深度學(xué)習(xí)(Deep Learning)成為最熱門的研究領(lǐng)域之一。在語音識(shí)別、圖像識(shí)別、自然語言處理等領(lǐng)域,深度學(xué)習(xí)取得了顯著成果。從原理上
    發(fā)表于 07-14 14:50 ?422次閱讀
    當(dāng)<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>遇上嵌入式資源困境,特征空間如何破局?

    嵌入式AI技術(shù)之深度學(xué)習(xí):數(shù)據(jù)樣本預(yù)處理過程中使用合適的特征變換對(duì)深度學(xué)習(xí)的意義

    ? 作者:蘇勇Andrew 使用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)機(jī)器學(xué)習(xí),網(wǎng)絡(luò)的每個(gè)層都將對(duì)輸入的數(shù)據(jù)做一次抽象,多層神經(jīng)網(wǎng)絡(luò)構(gòu)成深度學(xué)習(xí)的框架,可以深度理解數(shù)據(jù)中所要表示的規(guī)律。從原理上
    的頭像 發(fā)表于 04-02 18:21 ?877次閱讀

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機(jī)遇

    人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進(jìn)展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響了軍事發(fā)展趨勢(shì),導(dǎo)致戰(zhàn)爭形式和模式發(fā)生重大變化。本文將概述
    的頭像 發(fā)表于 02-14 11:15 ?530次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network
    的頭像 發(fā)表于 02-12 15:15 ?848次閱讀

    小白學(xué)解釋性AI:從機(jī)器學(xué)習(xí)到大模型

    科學(xué)AI需要可解釋性人工智能的崛起,尤其是深度學(xué)習(xí)的發(fā)展,在眾多領(lǐng)域帶來了令人矚目的進(jìn)步。然而,伴隨這些進(jìn)步而來的是一個(gè)關(guān)鍵問題——“黑箱”問題。許多人工智能模型,特別是復(fù)雜的模型,如神經(jīng)網(wǎng)
    的頭像 發(fā)表于 02-10 12:12 ?621次閱讀
    小白學(xué)<b class='flag-5'>解釋</b>性AI:從機(jī)器<b class='flag-5'>學(xué)習(xí)</b>到大模型

    NPU在深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動(dòng)力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價(jià)值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-14 15:17 ?1897次閱讀

    Pytorch深度學(xué)習(xí)訓(xùn)練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學(xué)習(xí)訓(xùn)練。
    的頭像 發(fā)表于 10-28 14:05 ?649次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>訓(xùn)練的方法

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識(shí)別 圖像識(shí)別是深度學(xué)習(xí)
    的頭像 發(fā)表于 10-27 11:13 ?1339次閱讀

    激光雷達(dá)技術(shù)的基于深度學(xué)習(xí)的進(jìn)步

    信息。這使得激光雷達(dá)在自動(dòng)駕駛、無人機(jī)、機(jī)器人等領(lǐng)域具有廣泛的應(yīng)用前景。 二、深度學(xué)習(xí)技術(shù)的發(fā)展 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)分支,它通過模擬人
    的頭像 發(fā)表于 10-27 10:57 ?1055次閱讀

    FPGA加速深度學(xué)習(xí)模型的案例

    FPGA(現(xiàn)場可編程門陣列)加速深度學(xué)習(xí)模型是當(dāng)前硬件加速領(lǐng)域的一個(gè)熱門研究方向。以下是一些FPGA加速深度學(xué)習(xí)模型的案例: 一、基于FPGA的AlexNet卷積運(yùn)算加速 項(xiàng)目名稱
    的頭像 發(fā)表于 10-25 09:22 ?1212次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對(duì)兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?2874次閱讀

    深度學(xué)習(xí)GPU加速效果如何

    圖形處理器(GPU)憑借其強(qiáng)大的并行計(jì)算能力,成為加速深度學(xué)習(xí)任務(wù)的理想選擇。
    的頭像 發(fā)表于 10-17 10:07 ?608次閱讀

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    。FPGA的優(yōu)勢(shì)就是可編程可配置,邏輯資源多,功耗低,而且賽靈思等都在極力推廣。不知道用FPGA做深度學(xué)習(xí)未來會(huì)怎樣發(fā)展,能走多遠(yuǎn),你怎么。 A:FPGA 在深度
    發(fā)表于 09-27 20:53

    PyTorch深度學(xué)習(xí)開發(fā)環(huán)境搭建指南

    PyTorch作為一種流行的深度學(xué)習(xí)框架,其開發(fā)環(huán)境的搭建對(duì)于深度學(xué)習(xí)研究者和開發(fā)者來說至關(guān)重要。在Windows操作系統(tǒng)上搭建PyTorch環(huán)境,需要綜合考慮多個(gè)方面,包括軟件安裝、
    的頭像 發(fā)表于 07-16 18:29 ?2500次閱讀

    深度學(xué)習(xí)算法在嵌入式平臺(tái)上的部署

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)算法在各個(gè)領(lǐng)域的應(yīng)用日益廣泛。然而,將深度學(xué)習(xí)算法部署到資源受限的嵌入式平臺(tái)上,仍然是一個(gè)具有挑戰(zhàn)性的任務(wù)。本文將從嵌入式平臺(tái)的特點(diǎn)、
    的頭像 發(fā)表于 07-15 10:03 ?3173次閱讀