一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

【連載】深度學習筆記12:卷積神經(jīng)網(wǎng)絡的Tensorflow實現(xiàn)

人工智能實訓營 ? 2018-10-30 18:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在上一講中,我們學習了如何利用 numpy 手動搭建卷積神經(jīng)網(wǎng)絡。但在實際的圖像識別中,使用 numpy 去手寫 CNN 未免有些吃力不討好。在 DNN 的學習中,我們也是在手動搭建之后利用 Tensorflow 去重新實現(xiàn)一遍,一來為了能夠?qū)ι窠?jīng)網(wǎng)絡的傳播機制能夠理解更加透徹,二來也是為了更加高效使用開源框架快速搭建起深度學習項目。本節(jié)就繼續(xù)和大家一起學習如何利用 Tensorflow 搭建一個卷積神經(jīng)網(wǎng)絡。

我們繼續(xù)以 NG 課題組提供的 sign 手勢數(shù)據(jù)集為例,學習如何通過 Tensorflow 快速搭建起一個深度學習項目。數(shù)據(jù)集標簽共有零到五總共 6 類標簽,示例如下:


先對數(shù)據(jù)進行簡單的預處理并查看訓練集和測試集維度:

X_train = X_train_orig/255.
X_test = X_test_orig/255.
Y_train = convert_to_one_hot(Y_train_orig, 6).T Y_test = convert_to_one_hot(Y_test_orig, 6).T
print ("number of training examples = " + str(X_train.shape[0]))
print ("number of test examples = " + str(X_test.shape[0]))
print ("X_train shape: " + str(X_train.shape))
print ("Y_train shape: " + str(Y_train.shape))
print ("X_test shape: " + str(X_test.shape))
print ("Y_test shape: " + str(Y_test.shape))

640?wx_fmt=png
可見我們總共有 1080 張 64643 訓練集圖像,120 張 64643 的測試集圖像,共有 6 類標簽。下面我們開始搭建過程。

創(chuàng)建 placeholder

首先需要為訓練集預測變量和目標變量創(chuàng)建占位符變量 placeholder ,定義創(chuàng)建占位符變量函數(shù):

def create_placeholders(n_H0, n_W0, n_C0, n_y):  
""" Creates the placeholders for the tensorflow session. Arguments: n_H0 -- scalar, height of an input image n_W0 -- scalar, width of an input image n_C0 -- scalar, number of channels of the input n_y -- scalar, number of classes Returns: X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float" Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float" """ X = tf.placeholder(tf.float32, shape=(None, n_H0, n_W0, n_C0), name='X') Y = tf.placeholder(tf.float32, shape=(None, n_y), name='Y')
return X, Y
參數(shù)初始化

然后需要對濾波器權值參數(shù)進行初始化:

def initialize_parameters():  
""" Initializes weight parameters to build a neural network with tensorflow. Returns: parameters -- a dictionary of tensors containing W1, W2 """ tf.set_random_seed(1) W1 = tf.get_variable("W1", [4,4,3,8], initializer = tf.contrib.layers.xavier_initializer(seed = 0)) W2 = tf.get_variable("W2", [2,2,8,16], initializer = tf.contrib.layers.xavier_initializer(seed = 0)) parameters = {"W1": W1,
"W2": W2}
return parameters
執(zhí)行卷積網(wǎng)絡的前向傳播過程

640?wx_fmt=png
前向傳播過程如下所示:
CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED


可見我們要搭建的是一個典型的 CNN 過程,經(jīng)過兩次的卷積-relu激活-最大池化,然后展開接上一個全連接層。利用
Tensorflow 搭建上述傳播過程如下:

def forward_propagation(X, parameters):  
""" Implements the forward propagation for the model Arguments: X -- input dataset placeholder, of shape (input size, number of examples) parameters -- python dictionary containing your parameters "W1", "W2" the shapes are given in initialize_parameters Returns: Z3 -- the output of the last LINEAR unit """ # Retrieve the parameters from the dictionary "parameters" W1 = parameters['W1'] W2 = parameters['W2']
# CONV2D: stride of 1, padding 'SAME' Z1 = tf.nn.conv2d(X,W1, strides = [1,1,1,1], padding = 'SAME')
# RELU A1 = tf.nn.relu(Z1)
# MAXPOOL: window 8x8, sride 8, padding 'SAME' P1 = tf.nn.max_pool(A1, ksize = [1,8,8,1], strides = [1,8,8,1], padding = 'SAME')
# CONV2D: filters W2, stride 1, padding 'SAME' Z2 = tf.nn.conv2d(P1,W2, strides = [1,1,1,1], padding = 'SAME')
# RELU A2 = tf.nn.relu(Z2)
# MAXPOOL: window 4x4, stride 4, padding 'SAME' P2 = tf.nn.max_pool(A2, ksize = [1,4,4,1], strides = [1,4,4,1], padding = 'SAME')
# FLATTEN P2 = tf.contrib.layers.flatten(P2) Z3 = tf.contrib.layers.fully_connected(P2, 6, activation_fn = None)
return Z3
計算當前損失

Tensorflow 中計算損失函數(shù)非常簡單,一行代碼即可:

def compute_cost(Z3, Y):  
""" Computes the cost Arguments: Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples) Y -- "true" labels vector placeholder, same shape as Z3 Returns: cost - Tensor of the cost function """ cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=Z3, labels=Y))
return cost

定義好上述過程之后,就可以封裝整體的訓練過程模型。可能你會問為什么沒有反向傳播,這里需要注意的是 Tensorflow 幫助我們自動封裝好了反向傳播過程,無需我們再次定義,在實際搭建過程中我們只需將前向傳播的網(wǎng)絡結構定義清楚即可。

封裝模型
def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009,
     num_epochs = 100, minibatch_size = 64, print_cost = True):  
""" Implements a three-layer ConvNet in Tensorflow: CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED Arguments: X_train -- training set, of shape (None, 64, 64, 3) Y_train -- test set, of shape (None, n_y = 6) X_test -- training set, of shape (None, 64, 64, 3) Y_test -- test set, of shape (None, n_y = 6) learning_rate -- learning rate of the optimization num_epochs -- number of epochs of the optimization loop minibatch_size -- size of a minibatch print_cost -- True to print the cost every 100 epochs Returns: train_accuracy -- real number, accuracy on the train set (X_train) test_accuracy -- real number, testing accuracy on the test set (X_test) parameters -- parameters learnt by the model. They can then be used to predict. """ ops.reset_default_graph() tf.set_random_seed(1) seed = 3 (m, n_H0, n_W0, n_C0) = X_train.shape n_y = Y_train.shape[1] costs = [] # Create Placeholders of the correct shape X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y)
# Initialize parameters parameters = initialize_parameters()
# Forward propagation Z3 = forward_propagation(X, parameters)
# Cost function cost = compute_cost(Z3, Y)
# Backpropagation optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost) # Initialize all the variables globally init = tf.global_variables_initializer()
# Start the session to compute the tensorflow graph with tf.Session() as sess:
# Run the initialization sess.run(init)
# Do the training loop for epoch in range(num_epochs): minibatch_cost = 0. num_minibatches = int(m / minibatch_size) seed = seed + 1 minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)
for minibatch in minibatches:
# Select a minibatch (minibatch_X, minibatch_Y) = minibatch _ , temp_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y}) minibatch_cost += temp_cost / num_minibatches
# Print the cost every epoch if print_cost == True and epoch % 5 == 0:
print ("Cost after epoch %i: %f" % (epoch, minibatch_cost))
if print_cost == True and epoch % 1 == 0: costs.append(minibatch_cost)
# plot the cost plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per tens)') plt.title("Learning rate =" + str(learning_rate)) plt.show() # Calculate the correct predictions predict_op = tf.argmax(Z3, 1) correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1))
# Calculate accuracy on the test set accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print(accuracy) train_accuracy = accuracy.eval({X: X_train, Y: Y_train}) test_accuracy = accuracy.eval({X: X_test, Y: Y_test}) print("Train Accuracy:", train_accuracy) print("Test Accuracy:", test_accuracy)

return train_accuracy, test_accuracy, parameters

對訓練集執(zhí)行模型訓練:

_,_,parameters=model(X_train,Y_train,X_test,Y_test)

訓練迭代過程如下:

640?wx_fmt=png


我們在訓練集上取得了 0.67 的準確率,在測試集上的預測準確率為 0.58 ,雖然效果并不顯著,模型也有待深度調(diào)優(yōu),但我們已經(jīng)學會了如何用 Tensorflow 快速搭建起一個深度學習系統(tǒng)了。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    BP神經(jīng)網(wǎng)絡卷積神經(jīng)網(wǎng)絡的比較

    BP神經(jīng)網(wǎng)絡卷積神經(jīng)網(wǎng)絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經(jīng)網(wǎng)絡 : BP神經(jīng)網(wǎng)絡是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?662次閱讀

    如何優(yōu)化BP神經(jīng)網(wǎng)絡學習

    優(yōu)化BP神經(jīng)網(wǎng)絡學習率是提高模型訓練效率和性能的關鍵步驟。以下是一些優(yōu)化BP神經(jīng)網(wǎng)絡學習率的方法: 一、理解學習率的重要性
    的頭像 發(fā)表于 02-12 15:51 ?930次閱讀

    BP神經(jīng)網(wǎng)絡深度學習的關系

    BP神經(jīng)網(wǎng)絡深度學習之間存在著密切的關系,以下是對它們之間關系的介紹: 一、BP神經(jīng)網(wǎng)絡的基本概念 BP神經(jīng)網(wǎng)絡,即反向傳播
    的頭像 發(fā)表于 02-12 15:15 ?851次閱讀

    深度學習入門:簡單神經(jīng)網(wǎng)絡的構建與實現(xiàn)

    深度學習中,神經(jīng)網(wǎng)絡是核心模型。今天我們用 Python 和 NumPy 構建一個簡單的神經(jīng)網(wǎng)絡。 神經(jīng)網(wǎng)絡由多個
    的頭像 發(fā)表于 01-23 13:52 ?528次閱讀

    人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡 ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?1184次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡</b>架構方法

    卷積神經(jīng)網(wǎng)絡實現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡因其在圖像和視頻處理任務中的卓越性能而廣受歡迎。隨著深度學習技術的快速發(fā)展,多種實現(xiàn)工具和框架應運而生,為研究人員和開發(fā)者提供了
    的頭像 發(fā)表于 11-15 15:20 ?668次閱讀

    卷積神經(jīng)網(wǎng)絡的參數(shù)調(diào)整方法

    卷積神經(jīng)網(wǎng)絡因其在處理具有空間層次結構的數(shù)據(jù)時的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設置。參數(shù)調(diào)整是一個復雜的過程,涉及到多個超參數(shù)的選擇和優(yōu)化。 網(wǎng)絡架構參數(shù)
    的頭像 發(fā)表于 11-15 15:10 ?1206次閱讀

    卷積神經(jīng)網(wǎng)絡在自然語言處理中的應用

    自然語言處理是人工智能領域的一個重要分支,它致力于使計算機能夠理解、解釋和生成人類語言。隨著深度學習技術的發(fā)展,卷積神經(jīng)網(wǎng)絡(CNNs)作為一種強大的模型,在圖像識別和語音處理等領域取
    的頭像 發(fā)表于 11-15 14:58 ?803次閱讀

    卷積神經(jīng)網(wǎng)絡與傳統(tǒng)神經(jīng)網(wǎng)絡的比較

    深度學習領域,神經(jīng)網(wǎng)絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(CNNs)和傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1866次閱讀

    深度學習中的卷積神經(jīng)網(wǎng)絡模型

    深度學習近年來在多個領域取得了顯著的進展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡作為深度
    的頭像 發(fā)表于 11-15 14:52 ?844次閱讀

    卷積神經(jīng)網(wǎng)絡的基本原理與算法

    ),是深度學習的代表算法之一。 一、基本原理 卷積運算 卷積運算是卷積神經(jīng)網(wǎng)絡的核心,用于提取圖
    的頭像 發(fā)表于 11-15 14:47 ?1773次閱讀

    關于卷積神經(jīng)網(wǎng)絡,這些概念你厘清了么~

    隨著人工智能(AI)技術的快速發(fā)展,AI可以越來越多地支持以前無法實現(xiàn)或者難以實現(xiàn)的應用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡 (CNN)及其對人工智能和機器
    發(fā)表于 10-24 13:56

    FPGA在深度神經(jīng)網(wǎng)絡中的應用

    隨著人工智能技術的飛速發(fā)展,深度神經(jīng)網(wǎng)絡(Deep Neural Network, DNN)作為其核心算法之一,在圖像識別、語音識別、自然語言處理等領域取得了顯著成果。然而,傳統(tǒng)的深度神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 07-24 10:42 ?1200次閱讀

    如何構建多層神經(jīng)網(wǎng)絡

    構建多層神經(jīng)網(wǎng)絡(MLP, Multi-Layer Perceptron)模型是一個在機器學習深度學習領域廣泛使用的技術,尤其在處理分類和回歸問題時。在本文中,我們將深入探討如何從頭
    的頭像 發(fā)表于 07-19 17:19 ?1557次閱讀

    Python自動訓練人工神經(jīng)網(wǎng)絡

    人工神經(jīng)網(wǎng)絡(ANN)是機器學習中一種重要的模型,它模仿了人腦神經(jīng)元的工作方式,通過多層節(jié)點(神經(jīng)元)之間的連接和權重調(diào)整來學習和解決問題。
    的頭像 發(fā)表于 07-19 11:54 ?698次閱讀