一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人工神經(jīng)網(wǎng)絡(luò)和生物神經(jīng)網(wǎng)絡(luò)到底有多像

zhKF_jqr_AI ? 來(lái)源:未知 ? 作者:胡薇 ? 2018-11-17 09:30 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

人工神經(jīng)網(wǎng)絡(luò)機(jī)器學(xué)習(xí)已經(jīng)成為大眾媒體的熱門主題。智能機(jī)器這一想法勾起了很多人的想象,而且人們特別喜歡把它和人類放一起比較。特別是有一個(gè)關(guān)于人工智能的底層機(jī)制的基礎(chǔ)問(wèn)題經(jīng)常出現(xiàn)——這些人工神經(jīng)網(wǎng)絡(luò)的工作方式真的和我們大腦中的神經(jīng)元相似嗎?

Tl;Dr

不。盡管從高層概念上說(shuō),ANN(人工神經(jīng)網(wǎng)絡(luò))受到了大腦中的神經(jīng)元和神經(jīng)網(wǎng)絡(luò)的啟發(fā),但這些概念的ML實(shí)現(xiàn)和大腦的工作方式大有徑庭。不僅如此,隨著這些年來(lái)ML領(lǐng)域的進(jìn)展,新的復(fù)雜想法和技術(shù)的提出(RNN、GAN等)——這一聯(lián)系進(jìn)一步削弱了。

關(guān)鍵相似點(diǎn)

前饋全連接網(wǎng)絡(luò)的高層架構(gòu)和一般原則體現(xiàn)了人工神經(jīng)網(wǎng)絡(luò)和大腦中的神經(jīng)網(wǎng)絡(luò)的相似性。

從高層看,大腦的神經(jīng)元由三部分組成:

樹突(輸入機(jī)制)—— 通過(guò)突觸接受輸入的樹狀結(jié)構(gòu)。輸入可能是來(lái)自感覺(jué)神經(jīng)細(xì)胞的感覺(jué)輸入,也可能是來(lái)自其他神經(jīng)細(xì)胞的“計(jì)算”輸入。單個(gè)細(xì)胞可以有多達(dá)10萬(wàn)輸入(每個(gè)來(lái)自不同的細(xì)胞)。

胞體(計(jì)算機(jī)制)—— 細(xì)胞體收集所有樹突的輸入,并基于這些信號(hào)決定是否激活輸出(脈沖)。這是一個(gè)概括性的說(shuō)法,因?yàn)橛行┯?jì)算在傳入胞體前就完成了(在樹突結(jié)構(gòu)中編碼)。

軸突(輸出機(jī)制)—— 一旦胞體決定是否激活輸出信號(hào)(也就是激活細(xì)胞),軸突負(fù)責(zé)傳輸信號(hào),通過(guò)末端的樹狀結(jié)構(gòu)將信號(hào)以脈沖連接傳遞給下一層神經(jīng)元的樹突。

類似地,ANN中也有等價(jià)的結(jié)構(gòu):

輸入連接—— 每個(gè)神經(jīng)元接受一組輸入,或者來(lái)自輸入層(等價(jià)于感覺(jué)輸入),或者來(lái)自網(wǎng)絡(luò)中前一層的神經(jīng)元。

線性計(jì)算和激活函數(shù)—— 這些“累加”輸入,接著非線性地決定是否激活神經(jīng)元。

輸出連接—— 這些傳遞激活信號(hào)至網(wǎng)絡(luò)中下一層的神經(jīng)元。

類似地,卷積神經(jīng)網(wǎng)絡(luò)借鑒了視覺(jué)通路。很酷的一件事情是,CNN原本主要借鑒的是架構(gòu)(對(duì)應(yīng)特定形狀或模式的較小的核/過(guò)濾器,每次應(yīng)用于較小的區(qū)域)。然而,多年之后,當(dāng)ML研究人員開(kāi)發(fā)了新的可視化CNN隱藏層的技術(shù)后,人們發(fā)現(xiàn)CNN表示圖像的方式和視皮層的層次表示十分類似——從表示簡(jiǎn)單模式的第一層開(kāi)始,較深的層復(fù)合出復(fù)雜形狀和對(duì)象。

可塑性—— 大腦的獨(dú)特性質(zhì)之一,學(xué)習(xí)和記憶得以成立的關(guān)鍵特性。大腦基于經(jīng)歷創(chuàng)建新的脈沖連接,廢棄舊的脈沖連接,加強(qiáng)或削弱現(xiàn)有的連接??伤苄陨踔猎趩蝹€(gè)神經(jīng)元中起作用——影響它的電磁行為,以及對(duì)特定輸入作出回應(yīng)觸發(fā)激活的趨向。

可塑性這一想法是訓(xùn)練ANN的關(guān)鍵原則——基于批次輸入迭代修改網(wǎng)絡(luò)參數(shù)(權(quán)重)。最近,元學(xué)習(xí)領(lǐng)域的進(jìn)展將ANN中可塑性的應(yīng)用范圍從參數(shù)拓展到超參數(shù)乃至整個(gè)模型。

關(guān)鍵區(qū)別

大腦神經(jīng)元的復(fù)雜性和魯棒性要比人工神經(jīng)元復(fù)雜強(qiáng)大得多。這不僅體現(xiàn)在神經(jīng)元的數(shù)量及每個(gè)神經(jīng)元的樹突數(shù)量上——比我們現(xiàn)在的ANN高出若干數(shù)量級(jí),還體現(xiàn)在單個(gè)神經(jīng)元的內(nèi)部復(fù)雜性上:和人工神經(jīng)元相比,神經(jīng)元的化學(xué)和電學(xué)機(jī)制精細(xì)得多,也強(qiáng)健得多。例如,神經(jīng)元不是零電位差的——細(xì)胞的不同區(qū)域可能具有不同的電位,有不同的電流通過(guò)。這讓單個(gè)神經(jīng)元可以進(jìn)行非線性運(yùn)算,識(shí)別隨著時(shí)間發(fā)生的變動(dòng)(例如,移動(dòng)的目標(biāo)),或者將不同的區(qū)域并行映射至不同的樹突區(qū)域——這樣整個(gè)細(xì)胞就可以完成復(fù)雜的復(fù)合任務(wù)。和非常簡(jiǎn)單的人造神經(jīng)元相比,這些都是高級(jí)很多的結(jié)構(gòu)和能力。

實(shí)現(xiàn)—— 大腦中的神經(jīng)元是以非常復(fù)雜和精細(xì)的機(jī)制實(shí)現(xiàn)的,可以進(jìn)行非常復(fù)雜的非線性計(jì)算:

信號(hào)在神經(jīng)元突觸間隙中的化學(xué)傳播,是通過(guò)神經(jīng)遞質(zhì)和感受器完成的,并由各種興奮和抑制元素放大。

基于復(fù)雜的時(shí)空電磁波推斷邏輯,興奮/抑制性突觸后電位構(gòu)建了動(dòng)作電位。

離子通道和微電位差控制脈沖的觸發(fā),細(xì)胞體中的脈沖將沿著軸突傳播。

大量我們尚未理解的機(jī)制……

和這些相比,ANN中使用的參數(shù)、權(quán)重、線性函數(shù)、激活函數(shù)十分簡(jiǎn)單粗暴。

在此之上,大腦中的神經(jīng)元的整體架構(gòu)要比大多數(shù)ANN復(fù)雜得多,特別是和常見(jiàn)的前饋網(wǎng)絡(luò)相比(前饋網(wǎng)絡(luò)的每一層只和前一層、后一層連接)。不過(guò),即使是和多層RNN或者殘差網(wǎng)絡(luò)相比,大腦中的神經(jīng)元網(wǎng)絡(luò)也是不可思議地復(fù)雜,在許多方向上有著數(shù)萬(wàn)跨“層”、跨區(qū)域的樹突。

另一方面,大腦不太可能使用反向傳播這樣的方法——基于誤差函數(shù)的偏導(dǎo)數(shù)上的鏈?zhǔn)椒▌t。

能源消耗—— 大腦是一個(gè)極端高效的計(jì)算機(jī),差不多十瓦左右,約為單個(gè)CPU能耗的三分之一。

GAN、RL、RNN等新進(jìn)展—— 在ML的理論和應(yīng)用上,都不斷涌現(xiàn)新的想法和創(chuàng)新。這些都不再基于大腦的工作機(jī)制。它們也許受到了大腦的啟發(fā),或者人類行為的啟發(fā),但在許多方面,現(xiàn)在的ML方面的研究和工作過(guò)著屬于自己的生活——迎接自身的挑戰(zhàn),追尋自身的機(jī)遇。

大腦是持續(xù)的靈感來(lái)源

盡管有上面列出的這些不同,ML研究仍然不斷將大腦列為靈感來(lái)源,因?yàn)榇竽X比我們現(xiàn)有的計(jì)算設(shè)備要強(qiáng)健和高效太多。認(rèn)識(shí)人工神經(jīng)網(wǎng)絡(luò)和大腦的差距,以及關(guān)于大腦機(jī)制的研究,激發(fā)了一些最激動(dòng)人心也最具挑戰(zhàn)性的ML近期研究。例如:

能效—— 如前所述,大腦的神經(jīng)元和連接數(shù)量比我們創(chuàng)建的任何ANN都要大上若干數(shù)量級(jí),但它消耗的能量卻要少若干數(shù)量級(jí)。這是一個(gè)很活躍的研究領(lǐng)域,包括基于DNA和其他分子的生物網(wǎng)絡(luò),以及試圖模仿神經(jīng)元和突觸的神經(jīng)形態(tài)(neuromorphic)電子開(kāi)關(guān)。

從很小的訓(xùn)練樣本集學(xué)習(xí)—— 最有可能是通過(guò)一些內(nèi)置的模型,這些模型對(duì)物理法則、心理學(xué)、因果關(guān)系和其他決定地球上的決策和行動(dòng)的規(guī)則有一些“直覺(jué)上的”理解。和現(xiàn)有的通用白板神經(jīng)網(wǎng)絡(luò)相比,這些加速了學(xué)習(xí),并能指導(dǎo)預(yù)測(cè)/行動(dòng)。

釋放無(wú)監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)的威力—— 無(wú)監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)是AI的“暗能量”。物理上,暗能量占據(jù)了我們的宇宙的大部分,而我們對(duì)其知之甚少。與此類似,很明顯我們的大腦主要通過(guò)無(wú)監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)的方式進(jìn)行學(xué)習(xí)。而當(dāng)前的大部分ML應(yīng)用使用監(jiān)督學(xué)習(xí)。解開(kāi)這一謎題是構(gòu)建能像人類一樣學(xué)習(xí)的機(jī)器的關(guān)鍵。

新的方法和架構(gòu)。例如,嗅覺(jué)背后的神經(jīng)系統(tǒng),可以為新的ML方法提供靈感,處理現(xiàn)有方法無(wú)法很好應(yīng)對(duì)的一些問(wèn)題。

最后,這當(dāng)然不可能是一個(gè)全面的答案,明顯還有很多我沒(méi)提到的相似性和區(qū)別。例如,來(lái)自多倫多的Blake Richards做了一個(gè)很棒的簡(jiǎn)短演講:從一個(gè)新穎獨(dú)特的角度陳述了大腦和深度學(xué)習(xí)在原則上的相似性。事實(shí)上,這一問(wèn)題是我們的時(shí)代最激動(dòng)人心、最復(fù)雜、進(jìn)展最快的兩個(gè)研究領(lǐng)域的交匯之處,所以你可以期望在未來(lái)我們會(huì)了解更多。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:人工神經(jīng)網(wǎng)絡(luò)真的像神經(jīng)元一樣工作嗎?

文章出處:【微信號(hào):jqr_AI,微信公眾號(hào):論智】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    BP神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)原則

    ,僅作為數(shù)據(jù)輸入的接口。輸入層的神經(jīng)元個(gè)數(shù)通常與輸入數(shù)據(jù)的特征數(shù)量相對(duì)應(yīng)。 隱藏層 :對(duì)輸入信號(hào)進(jìn)行非線性變換,是神經(jīng)網(wǎng)絡(luò)的核心部分,負(fù)責(zé)學(xué)習(xí)輸入與輸出之間的復(fù)雜映射關(guān)系。隱藏層可以一層或多層,層數(shù)和
    的頭像 發(fā)表于 02-12 16:41 ?746次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?673次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過(guò)訓(xùn)練數(shù)據(jù)自動(dòng)調(diào)整網(wǎng)絡(luò)參數(shù),實(shí)現(xiàn)對(duì)輸入數(shù)據(jù)的分類、回歸等任務(wù),無(wú)需人工進(jìn)行復(fù)雜的特征工程。 泛化能力強(qiáng) : BP神經(jīng)網(wǎng)絡(luò)通過(guò)訓(xùn)練數(shù)據(jù)學(xué)習(xí)到的特征表示
    的頭像 發(fā)表于 02-12 15:36 ?926次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?775次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本原理

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個(gè)核心過(guò)程。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)基本原理的介紹: 一、網(wǎng)絡(luò)結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:13 ?864次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工
    的頭像 發(fā)表于 01-09 10:24 ?1209次閱讀
    <b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見(jiàn)的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:53 ?1879次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(前饋神經(jīng)網(wǎng)絡(luò)) 2.1 結(jié)構(gòu) 傳統(tǒng)神經(jīng)網(wǎng)絡(luò),通常指的是前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks, FNN),是一種最簡(jiǎn)單的
    的頭像 發(fā)表于 11-15 09:42 ?1133次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機(jī)制

    LSTM(Long Short-Term Memory,長(zhǎng)短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),設(shè)計(jì)用于解決長(zhǎng)期依賴問(wèn)題,特別是在處理時(shí)間序列數(shù)據(jù)時(shí)表現(xiàn)出色。以下是LSTM神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-13 10:05 ?1633次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)RNN的區(qū)別

    在深度學(xué)習(xí)領(lǐng)域,循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)因其能夠處理序列數(shù)據(jù)而受到廣泛關(guān)注。然而,傳統(tǒng)RNN在處理長(zhǎng)序列時(shí)存在梯度消失或梯度爆炸的問(wèn)題。為了解決這一問(wèn)題,LSTM(長(zhǎng)短期記憶)神經(jīng)網(wǎng)絡(luò)應(yīng)運(yùn)而生。 循環(huán)
    的頭像 發(fā)表于 11-13 09:58 ?1218次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的基本原理 如何實(shí)現(xiàn)LSTM神經(jīng)網(wǎng)絡(luò)

    LSTM(長(zhǎng)短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),它能夠?qū)W習(xí)長(zhǎng)期依賴信息。在處理序列數(shù)據(jù)時(shí),如時(shí)間序列分析、自然語(yǔ)言處理等,LSTM因其能夠有效地捕捉時(shí)間序列中的長(zhǎng)期依賴關(guān)系而受到
    的頭像 發(fā)表于 11-13 09:53 ?1587次閱讀

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    不熟悉神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí),或者想了解神經(jīng)網(wǎng)絡(luò)如何優(yōu)化加速實(shí)驗(yàn)研究,請(qǐng)繼續(xù)閱讀,探索基于深度學(xué)習(xí)的現(xiàn)代智能化實(shí)驗(yàn)的廣闊應(yīng)用前景。什么是神經(jīng)網(wǎng)絡(luò)?“人工
    的頭像 發(fā)表于 11-01 08:06 ?667次閱讀
    Moku<b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    可以不局限于已知的訓(xùn)練圖像開(kāi)展識(shí)別。該神經(jīng)網(wǎng)絡(luò)需要映射到MCU中。 5、AI的模式識(shí)別內(nèi)部到底是什么? AI的神經(jīng)元網(wǎng)絡(luò)類似于人腦的生物神經(jīng)元網(wǎng)絡(luò)
    發(fā)表于 10-24 13:56

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14