一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀(guān)看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)算法如何應(yīng)用到自動(dòng)駕駛中

Dbwd_Imgtec ? 來(lái)源:未知 ? 作者:胡薇 ? 2018-11-22 14:14 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

機(jī)器學(xué)習(xí)算法已經(jīng)被廣泛應(yīng)用于自動(dòng)駕駛各種解決方案,電控單元中的傳感器數(shù)據(jù)處理大大提高了機(jī)器學(xué)習(xí)的利用率,也有一些潛在的應(yīng)用,比如利用不同外部和內(nèi)部的傳感器的數(shù)據(jù)融合(如激光雷達(dá)、雷達(dá)、攝像頭或物聯(lián)網(wǎng)),評(píng)估駕駛員狀況或?yàn)轳{駛場(chǎng)景分類(lèi)等。在KDnuggets網(wǎng)站發(fā)表的一篇文章中,作者Savaram Ravindra將自動(dòng)駕駛中機(jī)器學(xué)習(xí)算法主要分為四類(lèi),即決策矩陣算法、聚類(lèi)算法、模式識(shí)別算法和回歸算法。我們跟他一起看看,這些算法都是怎樣應(yīng)用的。

算法概覽

我們先設(shè)想這樣一個(gè)自動(dòng)駕駛場(chǎng)景——汽車(chē)的信息娛樂(lè)系統(tǒng)接收傳感器數(shù)據(jù)融合系統(tǒng)的信息,如果系統(tǒng)發(fā)現(xiàn)司機(jī)身體有恙,會(huì)指導(dǎo)無(wú)人車(chē)開(kāi)往附近的醫(yī)院。

這項(xiàng)應(yīng)用以機(jī)器學(xué)習(xí)為基礎(chǔ),能識(shí)別司機(jī)的語(yǔ)音、行為,進(jìn)行語(yǔ)言翻譯等。所有這些算法可以分為兩類(lèi):監(jiān)督學(xué)習(xí)和無(wú)監(jiān)督學(xué)習(xí),二者的區(qū)別在它們學(xué)習(xí)的方法。

監(jiān)督學(xué)習(xí)算法利用訓(xùn)練數(shù)據(jù)集學(xué)習(xí),并會(huì)堅(jiān)持學(xué)到達(dá)到所要求的置信度(誤差的最小概率)。監(jiān)督學(xué)習(xí)算法可分為回歸、分類(lèi)和異常檢測(cè)或維度縮減問(wèn)題。

無(wú)監(jiān)督學(xué)習(xí)算法會(huì)在可用數(shù)據(jù)中獲取價(jià)值。這意味著算法能找到數(shù)據(jù)的內(nèi)部聯(lián)系、找到模式,或者根據(jù)數(shù)據(jù)間的相似程度將數(shù)據(jù)集劃分出子集。無(wú)監(jiān)督算法可以被粗略分類(lèi)為關(guān)聯(lián)規(guī)則學(xué)習(xí)和聚類(lèi)。

強(qiáng)化學(xué)習(xí)算法是另一類(lèi)機(jī)器學(xué)習(xí)算法,這種學(xué)習(xí)方法介于監(jiān)督學(xué)習(xí)和無(wú)監(jiān)督學(xué)習(xí)之間。監(jiān)督學(xué)習(xí)會(huì)給每個(gè)訓(xùn)練樣例目標(biāo)標(biāo)簽,無(wú)監(jiān)督學(xué)習(xí)從來(lái)不會(huì)設(shè)立標(biāo)簽——而強(qiáng)化學(xué)習(xí)就是它們的平衡點(diǎn),它有時(shí)間延遲的稀疏標(biāo)簽——也就是未來(lái)的獎(jiǎng)勵(lì)。每個(gè)agent會(huì)根據(jù)環(huán)境獎(jiǎng)勵(lì)學(xué)習(xí)自身行為。了解算法的優(yōu)點(diǎn)和局限性,并開(kāi)發(fā)高效的學(xué)習(xí)算法是強(qiáng)化學(xué)習(xí)的目標(biāo)。

在自動(dòng)駕駛汽車(chē)上,機(jī)器學(xué)習(xí)算法的主要任務(wù)之一是持續(xù)感應(yīng)周?chē)h(huán)境,并預(yù)測(cè)可能出現(xiàn)的變化。

我們不妨分成四個(gè)子任務(wù): ? 檢測(cè)對(duì)象 ? 物體識(shí)別及分類(lèi) ? 物體定位 ? 運(yùn)動(dòng)預(yù)測(cè)

機(jī)器學(xué)習(xí)算法也可以被寬松地分為四類(lèi): ? 決策矩陣算法 ? 聚類(lèi)算法 ? 模式識(shí)別算法 ? 回歸算法

機(jī)器學(xué)習(xí)算法和任務(wù)分類(lèi)并不是一一對(duì)應(yīng)的,比如說(shuō),回歸算法既可以用于物體定位,也可以用于對(duì)象檢測(cè)和運(yùn)動(dòng)預(yù)測(cè)。

決策矩陣算法

決策矩陣算法能系統(tǒng)分析、識(shí)別和評(píng)估一組信息集和值之間關(guān)系的表現(xiàn),這些算法主要用戶(hù)決策。車(chē)輛的制動(dòng)或轉(zhuǎn)向是有依據(jù)的,它依賴(lài)算法對(duì)下一個(gè)運(yùn)動(dòng)的物體的識(shí)別、分類(lèi)、預(yù)測(cè)的置信水平。決策矩陣算法是由獨(dú)立訓(xùn)練的各種決策模型組合起來(lái)的模型,某種程度上說(shuō),這些預(yù)測(cè)組合在一起構(gòu)成整體的預(yù)測(cè),同時(shí)降低決策的錯(cuò)誤率。AdaBoosting是最常用的算法。

AdaBoost

Adaptive Boosting算法也可以簡(jiǎn)稱(chēng)為AdaBoost,它是多種學(xué)習(xí)算法的結(jié)合,可應(yīng)用于回歸和分類(lèi)問(wèn)題。與其他機(jī)器學(xué)習(xí)算法相比,它克服了過(guò)擬合問(wèn)題,并且對(duì)異常值和噪聲數(shù)據(jù)非常敏感。AdaBoost需要經(jīng)過(guò)多次迭代才能創(chuàng)造出強(qiáng)學(xué)習(xí)器,它具有自適應(yīng)性。學(xué)習(xí)器將重點(diǎn)關(guān)注被分類(lèi)錯(cuò)誤的樣本,最后再通過(guò)加權(quán)將弱學(xué)習(xí)器組合成強(qiáng)學(xué)習(xí)器。

AdaBoost幫助弱閾值分類(lèi)器提升為強(qiáng)分類(lèi)器。上面的圖像描繪了如何在一個(gè)可以理解性代碼的單個(gè)文件中實(shí)現(xiàn)AdaBoost算法。該函數(shù)包含一個(gè)弱分類(lèi)器和boosting組件。

弱分類(lèi)器嘗試在數(shù)據(jù)維數(shù)中找到理想閾值,并將數(shù)據(jù)分為2類(lèi)。分類(lèi)器迭代時(shí)調(diào)用數(shù)據(jù),并在每個(gè)分類(lèi)步驟后,改變分類(lèi)樣本的權(quán)重。

因此,它實(shí)際創(chuàng)建了級(jí)聯(lián)的弱分類(lèi)器,但性能像強(qiáng)分類(lèi)器一樣好。

聚類(lèi)算法

有時(shí),系統(tǒng)獲取的圖像不清楚,難以定位和檢測(cè)對(duì)象,分類(lèi)算法有可能丟失對(duì)象。在這種情況下,它們無(wú)法對(duì)問(wèn)題分類(lèi)并將其報(bào)告給系統(tǒng)。造成這種現(xiàn)象可能的原因包括不連續(xù)數(shù)據(jù)、極少的數(shù)據(jù)點(diǎn)或低分辨率圖像。K-means是一種常見(jiàn)的聚類(lèi)算法。

K-means

K-means是著名的聚類(lèi)算法,它從數(shù)據(jù)對(duì)象中選擇任意k個(gè)對(duì)象作為初始聚類(lèi)中心,再根據(jù)每個(gè)聚類(lèi)對(duì)象的均值(中心對(duì)象)計(jì)算出每個(gè)對(duì)象與中心對(duì)象的距離,然后根據(jù)最小距離重新劃分對(duì)象。最后重新計(jì)算調(diào)整后的聚類(lèi)的均值。

下圖形象描述了K-means算法。其中,(a)表示原始數(shù)據(jù)集,(b)表示隨機(jī)初始聚類(lèi)中心,(c-f)表示運(yùn)行2次k-means迭代演示。

模式識(shí)別算法(分類(lèi))

通過(guò)高級(jí)駕駛輔助系統(tǒng)(ADAS)中的傳感器獲得的圖像由各種環(huán)境數(shù)據(jù)組成,圖像過(guò)濾可以用來(lái)決定物體分類(lèi)樣例,排除無(wú)關(guān)的數(shù)據(jù)點(diǎn)。在對(duì)物體分類(lèi)前,模式識(shí)別是一項(xiàng)重要步驟,這種算法被定義為數(shù)據(jù)簡(jiǎn)化算法。數(shù)據(jù)簡(jiǎn)化算法可以減少數(shù)據(jù)集的邊緣和折線(xiàn)(擬合線(xiàn)段)。

PCA(原理分量分析)和HOG(定向梯度直方圖),支持向量機(jī)(Support Vector Machines,SVM)是ADAS中常用的識(shí)別算法。我們也經(jīng)常用到K最近鄰(KNN,K-NearestNeighbor)分類(lèi)算法和貝葉斯決策規(guī)則。

支持向量機(jī)(SVM)

SVM依賴(lài)于定義決策邊界的決策層概念。決策平面分隔由不同的類(lèi)成員組成的對(duì)象集。下面是一個(gè)示意圖。在這里,物體要么屬于紅色類(lèi)要么綠色類(lèi),分隔線(xiàn)將彼此分隔開(kāi)。落在左邊的新物體會(huì)被標(biāo)記為紅色,落在右邊就被標(biāo)記為綠色。

回歸算法

這種算法的專(zhuān)長(zhǎng)是預(yù)測(cè)事件。回歸分析會(huì)對(duì)兩個(gè)或更多變量之間的關(guān)聯(lián)性進(jìn)行評(píng)估,并對(duì)不同規(guī)模上的變量效果進(jìn)行對(duì)照。

回歸算法通常由三種度量標(biāo)準(zhǔn)驅(qū)動(dòng): ? 回歸線(xiàn)的形狀 ? 因變量的類(lèi)型 ? 因變量的數(shù)量

在無(wú)人車(chē)的驅(qū)動(dòng)和定位方面,圖像在A(yíng)DAS系統(tǒng)中扮演著關(guān)鍵角色。對(duì)于任何算法來(lái)說(shuō),最大的挑戰(zhàn)都是如何開(kāi)發(fā)一種用于進(jìn)行特征選取和預(yù)測(cè)的、基于圖像的模型。

回歸算法利用環(huán)境的可重復(fù)性來(lái)創(chuàng)造一個(gè)概率模型,這個(gè)模型揭示了圖像中給定物體位置與該圖像本身間的關(guān)系。通過(guò)圖形采樣,此概率模型能夠提供迅速的在線(xiàn)檢測(cè),同時(shí)也可以在線(xiàn)下進(jìn)行學(xué)習(xí)。模型還可以在不需要大量人類(lèi)建模的前提下被進(jìn)一步擴(kuò)展到其他物體上。算法會(huì)將某一物體的位置以一種在線(xiàn)狀態(tài)下的輸出和一種對(duì)物體存在的信任而返回。

回歸算法同樣可以被應(yīng)用到短期預(yù)測(cè)和長(zhǎng)期學(xué)習(xí)中,在自動(dòng)駕駛上,則尤其多用于決策森林回歸、神經(jīng)網(wǎng)絡(luò)回歸以及貝葉斯回歸。

回歸神經(jīng)網(wǎng)絡(luò)

神經(jīng)網(wǎng)絡(luò)可以被用在回歸、分類(lèi)或非監(jiān)督學(xué)習(xí)上。它們將未標(biāo)記的數(shù)據(jù)分組并歸類(lèi),或者監(jiān)督訓(xùn)練后預(yù)測(cè)連續(xù)值。神經(jīng)網(wǎng)絡(luò)的最后一層通常通過(guò)邏輯回歸將連續(xù)值變?yōu)樽兞?或1。

在上面的圖表中,x代表輸入,特征從網(wǎng)絡(luò)中的前一層傳遞到下一層。許多x將輸入到最后一個(gè)隱藏層的每個(gè)節(jié)點(diǎn),并且每一個(gè)x將乘以相關(guān)權(quán)重w。乘積之和將被移動(dòng)到一個(gè)激活函數(shù)中,在實(shí)際應(yīng)用中我們經(jīng)常用到ReLu激活函數(shù)。它不像Sigmoid函數(shù)那樣在處理淺層梯度問(wèn)題時(shí)容易飽和。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀(guān)點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:自動(dòng)駕駛中常用的四類(lèi)機(jī)器學(xué)習(xí)算法

文章出處:【微信號(hào):Imgtec,微信公眾號(hào):Imagination Tech】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    低速自動(dòng)駕駛與乘用車(chē)自動(dòng)駕駛在技術(shù)要求上有何不同?

    [首發(fā)于智駕最前沿微信公眾號(hào)]自動(dòng)駕駛技術(shù)的發(fā)展正朝著多元化方向邁進(jìn),其中低速自動(dòng)駕駛小車(chē)(以下簡(jiǎn)稱(chēng)“低速小車(chē)”)因其在物流配送、園區(qū)運(yùn)維、社區(qū)服務(wù)等場(chǎng)景的獨(dú)特價(jià)值而受到廣泛關(guān)注,且現(xiàn)階段已經(jīng)深入
    的頭像 發(fā)表于 07-14 09:10 ?149次閱讀
    低速<b class='flag-5'>自動(dòng)駕駛</b>與乘用車(chē)<b class='flag-5'>自動(dòng)駕駛</b>在技術(shù)要求上有何不同?

    新能源車(chē)軟件單元測(cè)試深度解析:自動(dòng)駕駛系統(tǒng)視角

    。 ?自動(dòng)駕駛軟件的特殊性? ? 感知層: ?激光雷達(dá)、攝像頭等傳感器數(shù)據(jù)處理算法的單元測(cè)試需覆蓋極端場(chǎng)景。例如,激光雷達(dá)點(diǎn)云濾波算法在雨雪天氣下的噪聲抑制能力需通過(guò)邊界測(cè)試驗(yàn)證。某廠(chǎng)商曾在測(cè)試
    發(fā)表于 05-12 15:59

    自動(dòng)駕駛規(guī)控算法驗(yàn)證到底需要什么樣的場(chǎng)景仿真軟件?

    ModelBase-AD憑借其優(yōu)秀的靜態(tài)場(chǎng)景模型、隨機(jī)交通流模型、整車(chē)動(dòng)力學(xué)模型,為各大主機(jī)廠(chǎng)和供應(yīng)商提供了準(zhǔn)確的自動(dòng)駕駛規(guī)控算法驗(yàn)證仿真環(huán)境,提升了自動(dòng)駕駛規(guī)控算法驗(yàn)證效率。
    的頭像 發(fā)表于 02-11 14:16 ?1574次閱讀
    <b class='flag-5'>自動(dòng)駕駛</b>規(guī)控<b class='flag-5'>算法</b>驗(yàn)證到底需要什么樣的場(chǎng)景仿真軟件?

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】2.具身智能機(jī)器人的基礎(chǔ)模塊

    方法和增量搜索方法。 另外,還有基于強(qiáng)化學(xué)習(xí)自動(dòng)駕駛規(guī)劃等等。 個(gè)人覺(jué)得,這部分內(nèi)容是整個(gè)具身智能的基石,沒(méi)有具身智能的基礎(chǔ)模塊就不會(huì)有具身智能的自主性和智能型。
    發(fā)表于 01-04 19:22

    如何實(shí)現(xiàn)自動(dòng)駕駛規(guī)控算法的仿真驗(yàn)證

    隨著自動(dòng)駕駛技術(shù)的不斷進(jìn)步,市場(chǎng)需求的持續(xù)增長(zhǎng),自動(dòng)駕駛產(chǎn)業(yè)迎來(lái)廣闊的發(fā)展前景。L3及以上級(jí)別的自動(dòng)駕駛技術(shù)有望逐步落地普及,為人們帶來(lái)更加安全、便捷、高效的出行體驗(yàn)。
    的頭像 發(fā)表于 12-30 09:39 ?1167次閱讀
    如何實(shí)現(xiàn)<b class='flag-5'>自動(dòng)駕駛</b>規(guī)控<b class='flag-5'>算法</b>的仿真驗(yàn)證

    MEMS技術(shù)在自動(dòng)駕駛汽車(chē)的應(yīng)用

    MEMS技術(shù)在自動(dòng)駕駛汽車(chē)的應(yīng)用主要體現(xiàn)在傳感器方面,這些傳感器為自動(dòng)駕駛汽車(chē)提供了關(guān)鍵的環(huán)境感知和數(shù)據(jù)采集能力。以下是對(duì)MEMS技術(shù)在自動(dòng)駕駛汽車(chē)
    的頭像 發(fā)表于 11-20 10:19 ?1453次閱讀

    基于改進(jìn)ResNet50網(wǎng)絡(luò)的自動(dòng)駕駛場(chǎng)景天氣識(shí)別算法

    摘要:為了充分利用自動(dòng)駕駛汽車(chē)路測(cè)圖像數(shù)據(jù),增加行駛過(guò)程對(duì)天氣情況識(shí)別的準(zhǔn)確性,提出了一種基于改進(jìn)ResNet50網(wǎng)絡(luò)的自動(dòng)駕駛場(chǎng)景天氣識(shí)別算法。該
    的頭像 發(fā)表于 11-09 11:14 ?1358次閱讀
    基于改進(jìn)ResNet50網(wǎng)絡(luò)的<b class='flag-5'>自動(dòng)駕駛</b>場(chǎng)景天氣識(shí)別<b class='flag-5'>算法</b>

    自動(dòng)駕駛汽車(chē)安全嗎?

    隨著未來(lái)汽車(chē)變得更加互聯(lián),汽車(chē)逐漸變得更加依賴(lài)技術(shù),并且逐漸變得更加自動(dòng)化——最終實(shí)現(xiàn)自動(dòng)駕駛,了解自動(dòng)駕駛汽車(chē)的安全問(wèn)題變得非常重要,這樣你才能回答“自動(dòng)駕駛汽車(chē)安全嗎”和“
    的頭像 發(fā)表于 10-29 13:42 ?1123次閱讀
    <b class='flag-5'>自動(dòng)駕駛</b>汽車(chē)安全嗎?

    智能駕駛自動(dòng)駕駛的關(guān)系

    智能駕駛自動(dòng)駕駛在概念上存在一定的聯(lián)系和區(qū)別,以下是對(duì)兩者關(guān)系的介紹: 一、概念定義 智能駕駛 : 智能駕駛是一個(gè)更為寬泛的概念,它指的是通過(guò)機(jī)器
    的頭像 發(fā)表于 10-23 16:02 ?1528次閱讀

    人工智能的應(yīng)用領(lǐng)域有自動(dòng)駕駛

    的核心技術(shù) 自動(dòng)駕駛汽車(chē)的核心依賴(lài)于人工智能,尤其是機(jī)器學(xué)習(xí)和深度學(xué)習(xí)技術(shù)。這些技術(shù)使得汽車(chē)能夠通過(guò)傳感器收集大量數(shù)據(jù),并實(shí)時(shí)進(jìn)行分析。以下是一些關(guān)鍵的人工智能技術(shù): 傳感器融合 :
    的頭像 發(fā)表于 10-22 16:18 ?1216次閱讀

    自動(dòng)駕駛HiL測(cè)試方案案例分析--ADS HiL測(cè)試系統(tǒng)#ADAS #自動(dòng)駕駛 #VTHiL

    自動(dòng)駕駛
    北匯信息POLELINK
    發(fā)布于 :2024年10月22日 15:20:19

    FPGA在自動(dòng)駕駛領(lǐng)域有哪些優(yōu)勢(shì)?

    FPGA(Field-Programmable Gate Array,現(xiàn)場(chǎng)可編程門(mén)陣列)在自動(dòng)駕駛領(lǐng)域具有顯著的優(yōu)勢(shì),這些優(yōu)勢(shì)使得FPGA成為自動(dòng)駕駛技術(shù)不可或缺的一部分。以下是FPGA在
    發(fā)表于 07-29 17:11

    FPGA在自動(dòng)駕駛領(lǐng)域有哪些應(yīng)用?

    是FPGA在自動(dòng)駕駛領(lǐng)域的主要應(yīng)用: 一、感知算法加速 圖像處理:自動(dòng)駕駛需要通過(guò)攝像頭獲取并識(shí)別道路信息和行駛環(huán)境,這涉及到大量的圖像處理任務(wù)。FPGA在處理圖像上的運(yùn)算速度快,可
    發(fā)表于 07-29 17:09

    自動(dòng)駕駛識(shí)別技術(shù)有哪些

    自動(dòng)駕駛的識(shí)別技術(shù)是自動(dòng)駕駛系統(tǒng)的重要組成部分,它使車(chē)輛能夠感知并理解周?chē)h(huán)境,從而做出智能決策。自動(dòng)駕駛識(shí)別技術(shù)主要包括多種傳感器及其融合技術(shù),以及基于這些傳感器數(shù)據(jù)的處理和識(shí)別
    的頭像 發(fā)表于 07-23 16:16 ?1494次閱讀