一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

研究人員開發(fā)一種神經(jīng)網(wǎng)絡(luò),能夠讀取食譜并生成烹飪完成后的熟食產(chǎn)品的圖像

jmiy_worldofai ? 來源:lq ? 2019-01-14 14:35 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

來自特拉維夫大學(xué)的一組研究人員開發(fā)了一種神經(jīng)網(wǎng)絡(luò),能夠讀取食譜并生成烹飪完成后的熟食產(chǎn)品的圖像。嗯,好像可以更換人頭拍色情片的DeepFakes還不夠糟糕,現(xiàn)在我們無法確定我們在網(wǎng)上看到的美味食物都是否是真實的了。由研究人員Ori Bar El,Ori Licht和Netanel Yosephian組成的特拉維夫團隊使用名為StackGAN V2的生成對抗網(wǎng)絡(luò)(GAN)的修改版本和巨大的recipe1M數(shù)據(jù)集中的52K圖像/配方組合創(chuàng)建了他們的AI。

該團隊開發(fā)了一種人工智能,只需要列出任何配方和說明清單,就可以運算成品食品的樣子。

這一切都是一名研究人員在向祖母詢問她傳統(tǒng)的番茄醬炸魚排配方時開始的。由于她年事已高,她不記得確切的食譜,所以吃貨科學(xué)家就建立了一個能夠給出食物圖像的系統(tǒng),方便輸出食譜。由于人們很難從飯菜中獲得具有實際數(shù)量和“隱藏”成分的精確配方,如鹽,胡椒,黃油,面粉等。因此基于配方生成食物圖像就成了有用的做法,這項任務(wù)對于人類來說非常具有挑戰(zhàn)性,對于計算機更是如此。

由于目前大多數(shù)人工智能系統(tǒng)都試圖在人類易于完成的任務(wù)中取代人類專家,解決一項甚至超出人類能力的任務(wù)會很有趣。

值得一提的是,與CUB和Oxford102數(shù)據(jù)集中的圖像相比,recipe1M數(shù)據(jù)集中的圖像質(zhì)量較低。這反映在許多模糊的圖像上,光照條件差,“粥狀圖像”以及圖像不是方形(這使得訓(xùn)練模型變得困難)。這個事實可能會解釋這兩個模型成功生成“類似粥”的食物圖像(例如面食,米飯,湯,沙拉),但卻難以生成具有獨特形狀的食物圖像(例如漢堡包,雞肉,飲料) )。

如果有足夠的配方,特拉維夫團隊的人工智能現(xiàn)在可以將它變成一個看起來足夠好的圖像,根據(jù)研究論文顯示,在盲測中,人類有時更喜歡計算機生成的圖片而不是真實照片。

該團隊打算繼續(xù)開發(fā)該系統(tǒng),希望擴展到超越食物的領(lǐng)域。包括完善當前的數(shù)據(jù)集質(zhì)量,還考慮構(gòu)建一個包含兒童書籍文本和相應(yīng)圖像的數(shù)據(jù)集,這樣就可以讓計算機看文章畫插畫了。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標題:研究人員開發(fā)神經(jīng)網(wǎng)絡(luò) 可讀取食譜并生成熟食產(chǎn)品的圖像

文章出處:【微信號:worldofai,微信公眾號:worldofai】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    無刷電機小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了個以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實現(xiàn)轉(zhuǎn)角預(yù)測,采用改進遺傳算法來訓(xùn)練網(wǎng)絡(luò)結(jié)
    發(fā)表于 06-25 13:06

    神經(jīng)網(wǎng)絡(luò)RAS在異步電機轉(zhuǎn)速估計中的仿真研究

    眾多方法中,由于其結(jié)構(gòu)簡單,穩(wěn)定性好廣泛受到人們的重視,且已被用于產(chǎn)品開發(fā)。但是MRAS仍存在在低速區(qū)速度估計精度下降和對電動機參數(shù)變化非常敏感的問題。本文利用神經(jīng)網(wǎng)絡(luò)的特點,使估計更為簡單、快速
    發(fā)表于 06-16 21:54

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?667次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機器學(xué)習模型,具有顯著的優(yōu)點,同時也存在些不容忽視的缺點。以下是對BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點的分析
    的頭像 發(fā)表于 02-12 15:36 ?921次閱讀

    BP神經(jīng)網(wǎng)絡(luò)圖像識別中的應(yīng)用

    BP神經(jīng)網(wǎng)絡(luò)圖像識別中發(fā)揮著重要作用,其多層結(jié)構(gòu)使得網(wǎng)絡(luò)能夠學(xué)習到復(fù)雜的特征表達,適用于處理非線性問題。以下是對BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:12 ?679次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    所擬合的數(shù)學(xué)模型的形式受到大腦中神經(jīng)元的連接和行為的啟發(fā),最初是為了研究大腦功能而設(shè)計的。然而,數(shù)據(jù)科學(xué)中常用的神經(jīng)網(wǎng)絡(luò)作為大腦模型已經(jīng)過時,現(xiàn)在它們只是能夠在某些應(yīng)用中提供最先進性能
    的頭像 發(fā)表于 01-09 10:24 ?1189次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    基于光學(xué)衍射神經(jīng)網(wǎng)絡(luò)的軌道角動量復(fù)用全息技術(shù)的設(shè)計與實驗研究

    隨著神經(jīng)網(wǎng)絡(luò)的發(fā)展,光學(xué)神經(jīng)網(wǎng)絡(luò)(ONN)的研究受到廣泛關(guān)注。研究人員從衍射光學(xué)、散射光、光干涉以及光學(xué)傅里葉變換等基礎(chǔ)理論出發(fā),利用各種光學(xué)設(shè)備及材料成功實現(xiàn)了
    的頭像 發(fā)表于 12-07 17:39 ?2810次閱讀
    基于光學(xué)衍射<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的軌道角動量復(fù)用全息技術(shù)的設(shè)計與實驗<b class='flag-5'>研究</b>

    卷積神經(jīng)網(wǎng)絡(luò)的實現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習技術(shù)的快速發(fā)展,多種實現(xiàn)工具和框架應(yīng)運而生,為研究人員開發(fā)者提供了強大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?671次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語言處理中的應(yīng)用

    自然語言處理是人工智能領(lǐng)域的個重要分支,它致力于使計算機能夠理解、解釋和生成人類語言。隨著深度學(xué)習技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為一種
    的頭像 發(fā)表于 11-15 14:58 ?807次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩
    的頭像 發(fā)表于 11-15 14:53 ?1870次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機器學(xué)習領(lǐng)域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN
    的頭像 發(fā)表于 11-15 09:42 ?1126次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)圖像處理中的應(yīng)用

    長短期記憶(LSTM)神經(jīng)網(wǎng)絡(luò)一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),它能夠學(xué)習長期依賴關(guān)系。雖然LSTM最初是為處理序列數(shù)據(jù)設(shè)計的,但近年來,它在圖像
    的頭像 發(fā)表于 11-13 10:12 ?1618次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)RNN的區(qū)別

    神經(jīng)網(wǎng)絡(luò)(RNN) RNN的基本結(jié)構(gòu) RNN是一種特殊的神經(jīng)網(wǎng)絡(luò),它能夠處理序列數(shù)據(jù)。在RNN中,每個時間步的輸入都會通過個循環(huán)結(jié)構(gòu)傳遞到
    的頭像 發(fā)表于 11-13 09:58 ?1213次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    取特征的強大工具,例如識別音頻信號或圖像信號中的復(fù)雜模式就是其應(yīng)用之。 1、什么是卷積神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)一種
    發(fā)表于 10-24 13:56

    UNet模型屬于哪種神經(jīng)網(wǎng)絡(luò)

    U-Net模型屬于卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)的一種特殊形式 。它最初由德國弗萊堡大學(xué)計算機科學(xué)系的研究人員在2015年提出,專為生物醫(yī)學(xué)
    的頭像 發(fā)表于 07-24 10:59 ?5554次閱讀