一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí):快速精確預(yù)測(cè)電子結(jié)構(gòu)問題

ExMh_zhishexues ? 來源:YXQ ? 2019-04-12 10:57 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

基于求解密度泛函理論(DFT)Kohn-Sham(KS)方程的模擬,已成為現(xiàn)代材料學(xué)和化學(xué)研究和開發(fā)組合過程的重要組成部分。盡管KS方程具有很強(qiáng)的普適性,但由于求解計(jì)算量很大,常規(guī)DFT計(jì)算一般只限于幾百個(gè)原子。

來自佐治亞理工學(xué)院的RampiRamprasad領(lǐng)導(dǎo)的團(tuán)隊(duì),報(bào)道了一種基于機(jī)器學(xué)習(xí)的方法,可以不直接求解KS方程而有效預(yù)測(cè)電子結(jié)構(gòu)。該方法利用新的旋轉(zhuǎn)不變表示,將格點(diǎn)周圍的原子環(huán)境映射到該格點(diǎn)處的電子密度和局部態(tài)密度,并使用預(yù)先計(jì)算得到的帶有幾百萬的格點(diǎn)信息的DFT結(jié)果來訓(xùn)練的神經(jīng)網(wǎng)絡(luò)來獲得該映射。上述方法可以精確模擬實(shí)際求解KS方程的結(jié)果,但是速度快幾個(gè)數(shù)量級(jí)。此外,由于該方法的計(jì)算量與系統(tǒng)尺寸嚴(yán)格成線性關(guān)系,因而有望用于大型體系的電子結(jié)構(gòu)預(yù)測(cè)。

該文近期發(fā)表于Computational Materials5:22(2019)

Solving the electronic structure problem with machine learning

Anand Chandrasekaran, Deepak Kamal, Rohit Batra, Chiho Kim, Lihua Chen & Rampi Ramprasad

Simulations based on solving the Kohn-Sham (KS) equation of density functional theory (DFT) have become a vital component of modern materials and chemical sciences research and development portfolios. Despite its versatility, routine DFT calculations are usually limited to a few hundred atoms due to the computational bottleneck posed by the KS equation. Here we introduce a machine-learning-based scheme to efficiently assimilate the function of the KS equation, and by-pass it to directly, rapidly, and accurately predict the electronic structure of a material or a molecule, given just its atomic configuration. A new rotationally invariant representation is utilized to map the atomic environment around a grid-point to the electron density and local density of states at that grid-point. This mapping is learned using a neural network trained on previously generated reference DFT results at millions of grid-points. The proposed paradigm allows for the high-fidelity emulation of KS DFT, but orders of magnitude faster than the direct solution. Moreover, the machine learning prediction scheme is strictly linear-scaling with system size.

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 電子
    +關(guān)注

    關(guān)注

    32

    文章

    1946

    瀏覽量

    91232
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8503

    瀏覽量

    134634

原文標(biāo)題:npj: 機(jī)器學(xué)習(xí)—快速精確預(yù)測(cè)電子結(jié)構(gòu)問題

文章出處:【微信號(hào):zhishexueshuquan,微信公眾號(hào):知社學(xué)術(shù)圈】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    華為依托昇騰AI打造蛋白結(jié)構(gòu)預(yù)測(cè)工具

    蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)一直是“21世紀(jì)的生物物理學(xué)”最重要的課題之一,北京昌平實(shí)驗(yàn)室聯(lián)合伙伴基于全場(chǎng)景AI框架“昇思MINDSPORE”開發(fā)的蛋白質(zhì)結(jié)構(gòu)預(yù)測(cè)模型在CAMEO競(jìng)賽拿下第一并霸榜四
    的頭像 發(fā)表于 03-03 13:52 ?493次閱讀

    如何快速學(xué)習(xí)硬件電路

    對(duì)于想要學(xué)習(xí)硬件電路的新手來說,一開始可能感到有些困難,但只要掌握了正確的學(xué)習(xí)方法和技巧,就能夠快速地成為一名優(yōu)秀的硬件電路工程師。 首先,新手需要了解基本的電路知識(shí),例如電阻、電容、電感等。這些
    的頭像 發(fā)表于 01-20 11:11 ?1166次閱讀
    如何<b class='flag-5'>快速</b><b class='flag-5'>學(xué)習(xí)</b>硬件電路

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹了機(jī)器學(xué)習(xí)的關(guān)鍵概念術(shù)語。在本文中,我們會(huì)介紹傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法特征,供各位老師選擇。 01 傳統(tǒng)機(jī)器
    的頭像 發(fā)表于 12-30 09:16 ?1192次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    如何選擇云原生機(jī)器學(xué)習(xí)平臺(tái)

    當(dāng)今,云原生機(jī)器學(xué)習(xí)平臺(tái)因其彈性擴(kuò)展、高效部署、低成本運(yùn)營等優(yōu)勢(shì),逐漸成為企業(yè)構(gòu)建和部署機(jī)器學(xué)習(xí)應(yīng)用的首選。然而,市場(chǎng)上的云原生機(jī)器
    的頭像 發(fā)表于 12-25 11:54 ?458次閱讀

    ASR和機(jī)器學(xué)習(xí)的關(guān)系

    自動(dòng)語音識(shí)別(ASR)技術(shù)的發(fā)展一直是人工智能領(lǐng)域的一個(gè)重要分支,它使得機(jī)器能夠理解和處理人類語言。隨著機(jī)器學(xué)習(xí)(ML)技術(shù)的迅猛發(fā)展,ASR系統(tǒng)的性能和準(zhǔn)確性得到了顯著提升。 ASR技術(shù)概述 自動(dòng)
    的頭像 發(fā)表于 11-18 15:16 ?784次閱讀

    什么是機(jī)器學(xué)習(xí)?通過機(jī)器學(xué)習(xí)方法能解決哪些問題?

    來源:Master編程樹“機(jī)器學(xué)習(xí)”最初的研究動(dòng)機(jī)是讓計(jì)算機(jī)系統(tǒng)具有人的學(xué)習(xí)能力以便實(shí)現(xiàn)人工智能。因?yàn)闆]有學(xué)習(xí)能力的系統(tǒng)很難被認(rèn)為是具有智能的。目前被廣泛采用的
    的頭像 發(fā)表于 11-16 01:07 ?965次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問題?

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對(duì)計(jì)算資源的需求也在不斷增長。NPU作為一種專門為深度學(xué)習(xí)機(jī)器
    的頭像 發(fā)表于 11-15 09:19 ?1224次閱讀

    AI大模型與傳統(tǒng)機(jī)器學(xué)習(xí)的區(qū)別

    AI大模型與傳統(tǒng)機(jī)器學(xué)習(xí)在多個(gè)方面存在顯著的區(qū)別。以下是對(duì)這些區(qū)別的介紹: 一、模型規(guī)模與復(fù)雜度 AI大模型 :通常包含數(shù)十億甚至數(shù)萬億的參數(shù),模型大小可以達(dá)到數(shù)百GB甚至更大。這些模型結(jié)構(gòu)復(fù)雜,由
    的頭像 發(fā)表于 10-23 15:01 ?2593次閱讀

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】時(shí)間序列的信息提取

    個(gè)重要環(huán)節(jié),目標(biāo)是從給定的時(shí)間序列數(shù)據(jù)中提取出有用的信息和特征,以支持后續(xù)的分析和預(yù)測(cè)任務(wù)。 特征工程(Feature Engineering)是將數(shù)據(jù)轉(zhuǎn)換為更好地表示潛在問題的特征,從而提高機(jī)器學(xué)習(xí)
    發(fā)表于 08-17 21:12

    【《時(shí)間序列與機(jī)器學(xué)習(xí)》閱讀體驗(yàn)】+ 時(shí)間序列的信息提取

    本人有些機(jī)器學(xué)習(xí)的基礎(chǔ),理解起來一點(diǎn)也不輕松,加油。 作者首先說明了時(shí)間序列的信息提取是時(shí)間序列分析的一個(gè)重要環(huán)節(jié),目標(biāo)是從給定的時(shí)間序列數(shù)據(jù)中提取出有用的信息和特征,以支持后續(xù)的分析和預(yù)測(cè)任務(wù),可以
    發(fā)表于 08-14 18:00

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】+ 鳥瞰這本書

    清晰,從時(shí)間序列分析的基礎(chǔ)理論出發(fā),逐步深入到機(jī)器學(xué)習(xí)算法在時(shí)間序列預(yù)測(cè)中的應(yīng)用,內(nèi)容全面,循序漸進(jìn)。每一章都經(jīng)過精心設(shè)計(jì),對(duì)理論知識(shí)進(jìn)行了詳細(xì)的闡述,對(duì)實(shí)際案例進(jìn)行了生動(dòng)的展示,使讀者在理論與實(shí)踐
    發(fā)表于 08-12 11:28

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】+ 簡單建議

    這本書以其系統(tǒng)性的框架和深入淺出的講解,為讀者繪制了一幅時(shí)間序列分析與機(jī)器學(xué)習(xí)融合應(yīng)用的宏偉藍(lán)圖。作者不僅扎實(shí)地構(gòu)建了時(shí)間序列分析的基礎(chǔ)知識(shí),更巧妙地展示了機(jī)器學(xué)習(xí)如何在這一領(lǐng)域發(fā)揮巨
    發(fā)表于 08-12 11:21

    【《時(shí)間序列與機(jī)器學(xué)習(xí)》閱讀體驗(yàn)】+ 了解時(shí)間序列

    收到《時(shí)間序列與機(jī)器學(xué)習(xí)》一書,彩色印刷,公式代碼清晰,非常精美。感謝作者,感謝電子發(fā)燒友提供了一個(gè)讓我學(xué)習(xí)時(shí)間序列及應(yīng)用的機(jī)會(huì)! 前言第一段描述了編寫背景: 由此可知,這是一本關(guān)于時(shí)
    發(fā)表于 08-11 17:55

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】全書概覽與時(shí)間序列概述

    數(shù)據(jù)中提取特征并將其轉(zhuǎn)化為交易策略,以及機(jī)器學(xué)習(xí)在其他金融領(lǐng)域(包括資產(chǎn)定價(jià)、資產(chǎn)配置、波動(dòng)率預(yù)測(cè))的應(yīng)用。 全書彩版印刷,內(nèi)容結(jié)構(gòu)嚴(yán)整,條理清晰,循序漸進(jìn),由淺入深,是很好的時(shí)間序列
    發(fā)表于 08-07 23:03

    【《大語言模型應(yīng)用指南》閱讀體驗(yàn)】+ 基礎(chǔ)知識(shí)學(xué)習(xí)

    收集海量的文本數(shù)據(jù)作為訓(xùn)練材料。這些數(shù)據(jù)集不僅包括語法結(jié)構(gòu)學(xué)習(xí),還包括對(duì)語言的深層次理解,如文化背景、語境含義和情感色彩等。 自監(jiān)督學(xué)習(xí):模型采用自監(jiān)督學(xué)習(xí)策略,在大量無標(biāo)簽文本數(shù)據(jù)
    發(fā)表于 08-02 11:03