一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度學(xué)習(xí)、CNN越來(lái)越火熱,這種熱度能夠持續(xù)多久?

DPVg_AI_era ? 來(lái)源:lp ? 2019-05-01 09:06 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本文介紹了LeCun和居里夫人、以及原子發(fā)展和AI發(fā)展的共通之處,試圖回答:人工智能處于何種發(fā)展階段、是否會(huì)有危險(xiǎn)、以及YannLeCun是新的RichardFeymann,還是新的MarieCurie,或兩者兼而有之?

深度學(xué)習(xí)、CNN越來(lái)越火熱,原因之一是它取得了很多令人矚目的成就。不過(guò),這種熱度能夠持續(xù)多久?深度學(xué)習(xí)是否在未來(lái)幾年仍然能夠推動(dòng)人工智能呈指數(shù)級(jí)增長(zhǎng)?恐怕需要我們仔細(xì)去思考一下。

美國(guó)未來(lái)研究院主席羅伊·阿馬拉有一條著名的阿馬拉定律:“我們傾向于過(guò)高估計(jì)技術(shù)在短期內(nèi)的影響,而低估它的長(zhǎng)期效應(yīng)”。

所以,深度學(xué)習(xí)到底是被高估還是低估,就得搞清楚目前深度學(xué)習(xí)和人工智能發(fā)展到了什么程度,站在哪個(gè)階段上。

Gartner熱度循環(huán)曲線(xiàn)

上圖中的曲線(xiàn)反應(yīng)了一項(xiàng)技術(shù)在5到10年內(nèi)關(guān)注度的變化,可供企業(yè)用來(lái)評(píng)估該項(xiàng)技術(shù)的發(fā)展階段,從而決定是否采用該技術(shù)、何時(shí)使用等。不過(guò)人工智能不僅僅是一項(xiàng)應(yīng)用于企業(yè)的技術(shù),同時(shí)是一個(gè)獨(dú)立的科學(xué)領(lǐng)域,它的熱度周期可能長(zhǎng)達(dá)50到100。

觀察人工智能發(fā)展走向的一種方法是將其看做是人類(lèi)對(duì)自我認(rèn)知的理解,對(duì)人類(lèi)學(xué)習(xí)系統(tǒng)的探索。從這個(gè)角度切入,就可以將我們?cè)谌斯ぶ悄茴I(lǐng)域的發(fā)現(xiàn),與過(guò)去的科學(xué)發(fā)現(xiàn)進(jìn)行比較,特別是那些與復(fù)雜系統(tǒng)有關(guān)的發(fā)現(xiàn):太陽(yáng)系,進(jìn)化,電力…以及,原子。

接下來(lái),我們來(lái)通過(guò)解答一個(gè)有趣的問(wèn)題來(lái)嘗試揭開(kāi)當(dāng)前人工智能的發(fā)展階段,以及30年后我們的后代回顧歷史會(huì)對(duì)現(xiàn)在我們做的事情做出何種評(píng)價(jià):天真?還是危險(xiǎn)?

這個(gè)問(wèn)題就是:深度學(xué)習(xí)大牛、CNN之父YannLeCun是AI領(lǐng)域的費(fèi)曼,還是居里夫人,或兩者兼而有之?

核物理簡(jiǎn)史

要解答上述問(wèn)題,需要對(duì)核物理的歷史做一個(gè)簡(jiǎn)單的梳理。

研究鈾鹽磷光現(xiàn)象的Becquerel于1897年偶然發(fā)現(xiàn)了鈾的放射性,鈾被光照后擁有了發(fā)射X射線(xiàn)的能力,接著他很快就發(fā)現(xiàn)鈾不需要外部能源也能發(fā)射X射線(xiàn)。之后居里夫人更精心地研究了放射性,并研究了除鈾以外的其他天然放射性化合物。

放射性的發(fā)現(xiàn)引起了公眾的熱情;與此同時(shí),放射性是一種新的現(xiàn)象,需要通過(guò)理論研究和對(duì)原子本身的更好理解來(lái)解釋。

愛(ài)因斯坦在1905年提出了著名的質(zhì)能等價(jià)理論,盧瑟福在幾年后通過(guò)實(shí)驗(yàn)用電子轟擊金屬板,確定了原子的第一個(gè)模型:有核和電子軌道。

這個(gè)不完整的原子模型一直沿用了15年。直到1928年現(xiàn)代普遍接受的“自旋”模型的出現(xiàn),以及1935年強(qiáng)核力理論的提出。

在強(qiáng)核力理論提出4年后,放射性元素第一次落地應(yīng)用,科學(xué)家使用同位素成功進(jìn)行了癌癥化療;隨后,1942年建立了第一個(gè)研究核反應(yīng)堆,1956年建成第一座全規(guī)模核能發(fā)電廠。

從1897年發(fā)現(xiàn)發(fā)射線(xiàn)元素,到成功實(shí)現(xiàn)落地應(yīng)用,歷時(shí)近半個(gè)世紀(jì)。

人工神經(jīng)網(wǎng)絡(luò)是如何開(kāi)始的

神經(jīng)網(wǎng)絡(luò)的概念很早就有了,最初的動(dòng)機(jī)是編寫(xiě)一種模仿突觸行為的算法。在1957年討論了第一個(gè)感知器,1965年討論了第一個(gè)多層感知器。

而那個(gè)時(shí)候的計(jì)算機(jī)剛剛開(kāi)始發(fā)展,速度非常慢,最簡(jiǎn)單的網(wǎng)絡(luò)也得數(shù)天才能訓(xùn)練完畢,效率極其低下,因此在接下來(lái)的十幾年都沒(méi)有被大量使用。

第一個(gè)轉(zhuǎn)機(jī)出現(xiàn)在1974年,Werbos發(fā)現(xiàn)了反向傳播。反向傳播使用了神經(jīng)網(wǎng)絡(luò)操作具有差異性和可投射性的特點(diǎn),當(dāng)網(wǎng)絡(luò)出錯(cuò)時(shí),可以將錯(cuò)誤本身回溯到網(wǎng)絡(luò)的各層,以幫助它自我糾正。從某種意義上說(shuō),它是我們今天稱(chēng)之為深度學(xué)習(xí)的開(kāi)始。

幾年后,KunihikoFukushima推出了Neocognitron,靈感來(lái)自視覺(jué)皮層中感知細(xì)胞的工作模式。有了Neocognitron,才有了后來(lái)廣為人知的CNN。

神經(jīng)網(wǎng)絡(luò)的重大發(fā)展,源自算力的提升,這要感謝現(xiàn)代GPU、TPU等。

YannLeCun:讓人工智能看到了一束光

在YannLeCun將神經(jīng)網(wǎng)絡(luò)第一次落地之前,AI正在經(jīng)歷漫長(zhǎng)的寒冬期。

YannLeCun通過(guò)反向傳播和CNN來(lái)識(shí)別用于郵件路由的郵件上的郵政編碼,雖然結(jié)果喜人,然而距離深度學(xué)習(xí)成為主流還需要20年左右的時(shí)間。

三個(gè)G:Google,GAN和GPU

2014年,IanGoodfellow與蒙特利爾大學(xué)的同事們?cè)诰瓢衫锛ち覡?zhēng)吵。有關(guān)自動(dòng)生成逼真圖像的能力以及如何教導(dǎo)神經(jīng)網(wǎng)絡(luò)做到這一點(diǎn)。喝大了的Ian誕生了一個(gè)瘋狂想法,讓兩個(gè)神經(jīng)網(wǎng)絡(luò)互毆,第一個(gè)網(wǎng)絡(luò)生成圖像,第二個(gè)網(wǎng)絡(luò)“調(diào)教”第一個(gè)。

現(xiàn)在仍然不清為什么讓兩個(gè)神經(jīng)網(wǎng)絡(luò)并行運(yùn)行會(huì)有效,這個(gè)問(wèn)題仍然亟待解決。GAN是過(guò)去幾年出現(xiàn)的有關(guān)機(jī)器學(xué)習(xí)的一個(gè)例子,但其他包括:

學(xué)習(xí)(可解釋以及好奇心)人工智能系統(tǒng)本身缺乏好奇心,不會(huì)學(xué)到新東西,缺乏可解釋性

深度雙重Q-Learning(DDQN),深度學(xué)習(xí)網(wǎng)絡(luò)嘗試去學(xué)會(huì)一個(gè)策略(例如,玩AtariPong)。兩個(gè)網(wǎng)絡(luò)分別評(píng)估特定步驟是否智能和相互關(guān)聯(lián)的結(jié)果

YOLO(You Look Only Once)對(duì)象檢測(cè)算法,以奇怪的方式檢測(cè)圖像中的對(duì)象,但速度超快

回顧有關(guān)人工智能的各種概念的提出,例如反向傳播、CNN、GAN,RNN,LTSM等,可以和原子的發(fā)展歷程進(jìn)行類(lèi)比。

Atom和DeepLearning/AI

30年后的人工智能

未來(lái)很難預(yù)測(cè),不過(guò)可以通過(guò)根據(jù)過(guò)去的科學(xué)發(fā)現(xiàn),嘗試做出一些假設(shè),并找出真正在AI上取得重大進(jìn)展需要做些什么:

更多理論:人工智能現(xiàn)在階段,類(lèi)似自旋模型出現(xiàn)之前的階段。

也許未來(lái)可能建立一個(gè)適用的學(xué)習(xí)理論,其中包含驅(qū)動(dòng)因素(如好奇心,概括能力等),并將這些概念融合在一起

更多工業(yè)化:工程領(lǐng)域需要通用以及可重用的組件。這一點(diǎn)已經(jīng)從核工業(yè)中得到證實(shí)。在深度學(xué)習(xí)中,嵌入和可重用的表示正在成為一種趨勢(shì)

更多落地商用:人工智能目前主要在虛擬世界、而非真實(shí)世界中運(yùn)行,這限制了它的一些實(shí)際應(yīng)用。一些新出現(xiàn)的概念,例如“數(shù)字孿生工廠”,人工智能可以在其上運(yùn)行并進(jìn)行優(yōu)化的見(jiàn)解

更多硬件:放射性是在建造靜電計(jì)的時(shí)候偶然發(fā)現(xiàn)的。而AI是在當(dāng)前硬件(包括GPU和TPU)上開(kāi)發(fā)的,所以,未來(lái)可能需要量子計(jì)算機(jī)

如果至少上述任何兩個(gè)“預(yù)測(cè)”都成為現(xiàn)實(shí),30年后當(dāng)我們的后代回顧21世紀(jì)初的深度學(xué)習(xí)研究領(lǐng)域是,可能會(huì)說(shuō):是的,也許YannLeCun是AI領(lǐng)域的居里夫人!

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1806

    文章

    49004

    瀏覽量

    249265
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122782
  • cnn
    cnn
    +關(guān)注

    關(guān)注

    3

    文章

    354

    瀏覽量

    22740

原文標(biāo)題:Yan LeCun會(huì)是AI界的居里夫人嗎?

文章出處:【微信號(hào):AI_era,微信公眾號(hào):新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    后摩爾時(shí)代:芯片不是越來(lái)越涼,而是越來(lái)越

    1500W,而在消費(fèi)領(lǐng)域,旗艦顯卡RTX5090也首次引入了液態(tài)金屬這一更高效但成本更高的熱界面材料(TIM)。為什么芯片越來(lái)越熱?它的熱從哪里來(lái)?芯片內(nèi)部每一個(gè)晶體管
    的頭像 發(fā)表于 07-12 11:19 ?179次閱讀
    后摩爾時(shí)代:芯片不是<b class='flag-5'>越來(lái)越</b>涼,而是<b class='flag-5'>越來(lái)越</b>燙

    【高云GW5AT-LV60 開(kāi)發(fā)套件試用體驗(yàn)】基于開(kāi)發(fā)板進(jìn)行深度學(xué)習(xí)實(shí)踐,并盡量實(shí)現(xiàn)皮膚病理圖片的識(shí)別

    可以多看看。*附件:fpga_cnn.rar 相關(guān)文件都在里面了 探索了一陣子cnn,并且也跟著網(wǎng)上的一些開(kāi)源的方案學(xué)習(xí)一些 比如這里的:# 一起學(xué)習(xí)用Verilog在FPGA上實(shí)現(xiàn)
    發(fā)表于 06-11 22:35

    芯片的驗(yàn)證為何越來(lái)越難?

    本文由半導(dǎo)體產(chǎn)業(yè)縱橫(ID:ICVIEWS)編譯自semiengineering過(guò)去,仿真曾是驗(yàn)證的唯一工具,但如今選擇已變得多樣。平衡成本與收益并非易事。芯片首次流片成功率正在下降,主要原因是設(shè)計(jì)復(fù)雜度上升和成本削減的嘗試。這意味著管理層必須深入審視其驗(yàn)證策略,確保工具和人員的潛力得到最大發(fā)揮。自半導(dǎo)體時(shí)代伊始,通過(guò)仿真驗(yàn)證設(shè)計(jì)是否具備所需功能,一直是功能
    的頭像 發(fā)表于 06-05 11:55 ?368次閱讀
    芯片的驗(yàn)證為何<b class='flag-5'>越來(lái)越</b>難?

    當(dāng)我問(wèn)DeepSeek:為什么傳感器技術(shù)越來(lái)越重要

    為什么傳感器技術(shù)越來(lái)越重要 我們一起來(lái)看看 ????DeepSeek是怎么說(shuō)的 為什么傳感器技術(shù)越來(lái)越重要? ? 傳感器:數(shù)字世界的感官,智能時(shí)代的基石…… 在這個(gè)數(shù)字化的世界里,
    的頭像 發(fā)表于 03-01 15:58 ?363次閱讀

    GPU在深度學(xué)習(xí)中的應(yīng)用 GPUs在圖形設(shè)計(jì)中的作用

    。 GPU的并行計(jì)算能力 GPU最初被設(shè)計(jì)用于處理圖形和圖像的渲染,其核心優(yōu)勢(shì)在于能夠同時(shí)處理成千上萬(wàn)的像素點(diǎn)。這種并行處理能力使得GPU非常適合執(zhí)行深度學(xué)習(xí)中的大規(guī)模矩陣運(yùn)算。在
    的頭像 發(fā)表于 11-19 10:55 ?1611次閱讀

    NPU在深度學(xué)習(xí)中的應(yīng)用

    設(shè)計(jì)的硬件加速器,它在深度學(xué)習(xí)中的應(yīng)用日益廣泛。 1. NPU的基本概念 NPU是一種專(zhuān)門(mén)針對(duì)深度學(xué)習(xí)算法優(yōu)化的處理器,它與傳統(tǒng)的CPU和GPU有所不同。NPU通常具有高度并行的處理能
    的頭像 發(fā)表于 11-14 15:17 ?1898次閱讀

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識(shí)別 圖像識(shí)別是深度學(xué)習(xí)
    的頭像 發(fā)表于 10-27 11:13 ?1339次閱讀

    激光雷達(dá)技術(shù)的基于深度學(xué)習(xí)的進(jìn)步

    信息。這使得激光雷達(dá)在自動(dòng)駕駛、無(wú)人機(jī)、機(jī)器人等領(lǐng)域具有廣泛的應(yīng)用前景。 二、深度學(xué)習(xí)技術(shù)的發(fā)展 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)分支,它通過(guò)模擬人
    的頭像 發(fā)表于 10-27 10:57 ?1057次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    人類(lèi)的學(xué)習(xí)過(guò)程,實(shí)現(xiàn)對(duì)復(fù)雜數(shù)據(jù)的學(xué)習(xí)和識(shí)別。AI大模型則是指模型的參數(shù)數(shù)量巨大,需要龐大的計(jì)算資源來(lái)進(jìn)行訓(xùn)練和推理。深度學(xué)習(xí)算法為AI大模型提供了核心的技術(shù)支撐,使得大模型
    的頭像 發(fā)表于 10-23 15:25 ?2876次閱讀

    人民郵電報(bào):“開(kāi)源”到底是什么?為啥熱度越來(lái)越高?

    ? ? ? 本文轉(zhuǎn)載自人民郵電報(bào) 這些年,“開(kāi)源”這個(gè)詞越來(lái)越火,開(kāi)源AI大模型、開(kāi)源數(shù)據(jù)庫(kù)、開(kāi)源框架、開(kāi)源硬件等新詞匯層出不窮。那么到底什么是“開(kāi)源”呢,是“開(kāi)源節(jié)流”中的“開(kāi)源”嗎? 非也,今天
    的頭像 發(fā)表于 10-17 14:21 ?3778次閱讀
    人民郵電報(bào):“開(kāi)源”到底是什么?為啥<b class='flag-5'>熱度</b><b class='flag-5'>越來(lái)越</b>高?

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    支持不同的數(shù)據(jù)精度、量化和激活函數(shù)等。這種靈活性使其能夠適應(yīng)各種深度學(xué)習(xí)任務(wù),為不同的應(yīng)用場(chǎng)景提供定制化的解決方案。 ? 低功耗:FPGA 是可編程的,可以在設(shè)計(jì)中僅使用所需的計(jì)算資源
    發(fā)表于 09-27 20:53

    越來(lái)越“熱”的芯片,如何降溫?

    前言? 2024 年,AI 的“狂飆突進(jìn)”勢(shì)頭不減,繼 ChatGPT 之后,文生視頻大模型 Sora 的推出更是讓人們看到 AI 的無(wú)限可能。然而,隨之而來(lái)的能耗問(wèn)題也不容忽視。國(guó)際能源署(IEA)《Electricity 2024——Analysis and forecast to 2026E》的報(bào)告,ChatGPT 每響應(yīng)一個(gè)請(qǐng)求需要消耗 2.9 瓦時(shí),這相當(dāng)于一個(gè) 5 瓦的 LED 燈泡亮 35 分鐘??紤]到每天 90 億次搜索,這將在一年內(nèi)額外消耗近 10 太瓦時(shí)的電力,相當(dāng)于一座小型核電站一年的發(fā)電量。而這些能源消耗的“罪魁禍?zhǔn)住敝?/div>
    的頭像 發(fā)表于 09-27 15:59 ?697次閱讀
    <b class='flag-5'>越來(lái)越</b>“熱”的芯片,如何降溫?

    深度識(shí)別算法包括哪些內(nèi)容

    深度識(shí)別算法是深度學(xué)習(xí)領(lǐng)域的一個(gè)重要組成部分,它利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)輸入數(shù)據(jù)進(jìn)行高層次的理解和識(shí)別。深度識(shí)別算法涵蓋了多個(gè)方面的內(nèi)容,主要
    的頭像 發(fā)表于 09-10 15:28 ?834次閱讀

    LM324調(diào)零調(diào)好后,改變輸入的時(shí)候,輸出的偏差越來(lái)越大,怎么解決?

    調(diào)零調(diào)好后,改變輸入的時(shí)候,輸出的偏差越來(lái)越大,不知道如何調(diào)整,望大神指導(dǎo)!
    發(fā)表于 08-28 06:51

    我們的城市為什么越來(lái)越熱?

    全球氣候在變暖,我們焚燒石油,煤炭等化石燃料,產(chǎn)生了大量二氧化碳等溫室氣體,導(dǎo)致全球氣候變暖,尤其大陸氣溫升高,城市變得越來(lái)越熱。圖:上海前灘的夜晚,被太陽(yáng)曬熱的建筑熱島效應(yīng)夏天天太熱,在陽(yáng)光
    的頭像 發(fā)表于 08-03 08:14 ?986次閱讀
    我們的城市為什么<b class='flag-5'>越來(lái)越</b>熱?