一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

討論深度神經(jīng)網(wǎng)絡(luò)、AI研究從大腦得到的啟發(fā)

DPVg_AI_era ? 來(lái)源:lq ? 2019-05-13 09:11 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

深度學(xué)習(xí)教父、圖靈獎(jiǎng)得主Geoffrey Hinton今天在谷歌I/O大會(huì)的“爐邊聊天”上發(fā)表演講,討論了深度神經(jīng)網(wǎng)絡(luò)、AI研究從大腦得到的啟發(fā),以及真正理解大腦將如何改變?cè)S多領(lǐng)域。

最新一屆圖靈獎(jiǎng)得主、多倫多大學(xué)教授兼谷歌大腦高級(jí)研究員 Geoffrey Hinton 今天在谷歌 I/O 開(kāi)發(fā)者大會(huì)的爐邊聊天上發(fā)表了演講。

Hinton 討論了神經(jīng)網(wǎng)絡(luò)的起源 —— 模擬生物神經(jīng)元的數(shù)學(xué)函數(shù)層,以及 AI 有朝一日能夠像人類一樣進(jìn)行推理的可行性和意義。

Hinton 被稱為 “人工智能教父”。過(guò)去 30 年里,Hinton 一直致力于解決 AI 面臨的一些最大的挑戰(zhàn)。除了在機(jī)器學(xué)習(xí)方面的開(kāi)創(chuàng)性工作,Hinton 還撰寫(xiě) (或與他人合作撰寫(xiě)) 了 200 多篇 AI 論文,包括 1986 年發(fā)表的一篇開(kāi)創(chuàng)性的機(jī)器學(xué)習(xí)技術(shù)論文 —— 反向傳播。

Hinton 推廣了深度神經(jīng)網(wǎng)絡(luò)這一概念,即以反向傳播為基礎(chǔ)的 AI 模型,其中包含相互連接的層,傳輸 “信號(hào)” 并調(diào)整連接的突觸強(qiáng)度 (權(quán)重)。通過(guò)這種方式,神經(jīng)網(wǎng)絡(luò)可以從輸入數(shù)據(jù)中提取特征,并學(xué)會(huì)做出預(yù)測(cè)。

你只需要注意力機(jī)制!深度神經(jīng)網(wǎng)絡(luò)優(yōu)化始于Transformers

深度神經(jīng)網(wǎng)絡(luò)得到大幅優(yōu)化是在兩年前,谷歌的研究人員發(fā)表一篇名為 “Attention Is all You Need” 的論文,提出名為 Transformers 的神經(jīng)網(wǎng)絡(luò)架構(gòu)。

Transformers 拋棄了傳統(tǒng)的 RNN/CNN 結(jié)構(gòu),從自然語(yǔ)言本身的特性出發(fā),實(shí)現(xiàn)了完全基于注意力機(jī)制的 Transformer 機(jī)器翻譯網(wǎng)絡(luò)架構(gòu)。

得益于動(dòng)態(tài)計(jì)算權(quán)重的注意力機(jī)制,Transformers 在語(yǔ)言翻譯任務(wù)中勝過(guò)了此前最先進(jìn)的模型,同時(shí)大幅減少了訓(xùn)練所需的計(jì)算量。

Hinton 承認(rèn),創(chuàng)新的速度甚至讓他自己都感到驚訝。他說(shuō):“2012 年時(shí),我沒(méi)有想到僅僅 5 年之后,我們就能夠使用相同的技術(shù)在多種語(yǔ)言之間進(jìn)行翻譯?!?/p>

盡管如此,Hinton 認(rèn)為目前的 AI 和機(jī)器學(xué)習(xí)方法仍然存在局限性。他指出,大多數(shù)計(jì)算機(jī)視覺(jué)模型缺少反饋機(jī)制 —— 也就是說(shuō),它們不會(huì)嘗試從更高層次的表示中重建數(shù)據(jù)。相反,它們?cè)噲D通過(guò)改變權(quán)重來(lái)區(qū)別性地學(xué)習(xí)特性。

Hinton 說(shuō):“它們并沒(méi)有在每一層的特征檢測(cè)器上檢查是否能夠重建下面的數(shù)據(jù)?!?/p>

AI系統(tǒng)主要是無(wú)監(jiān)督的,Hinton團(tuán)隊(duì)轉(zhuǎn)向人類大腦啟發(fā)

Hinton 和同事們最近開(kāi)始轉(zhuǎn)向人類視覺(jué)皮層尋找啟發(fā)。Hinton 說(shuō),人類的視覺(jué)采用一種重建的方法來(lái)學(xué)習(xí),事實(shí)證明,計(jì)算機(jī)視覺(jué)系統(tǒng)中的重建技術(shù)增強(qiáng)了它們抵抗對(duì)抗性攻擊的能力。

“腦科學(xué)家們都同意這樣的觀點(diǎn),即如果你的大腦皮層有兩個(gè)區(qū)域處于感知通路 (perceptual pathway) 中,并且一個(gè)區(qū)域與另一個(gè)區(qū)域之間存在連接,那么總會(huì)有一個(gè)反向的通路?!盚inton 說(shuō)。

需要說(shuō)明的是,Hinton 認(rèn)為神經(jīng)科學(xué)家可以從 AI 研究人員那里學(xué)到很多東西。他認(rèn)為未來(lái)的 AI 系統(tǒng)將主要是無(wú)監(jiān)督的。無(wú)監(jiān)督學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)分支,可以從未標(biāo)記、未分類的測(cè)試數(shù)據(jù)中提取知識(shí) —— 在學(xué)習(xí)共性和對(duì)共性是否存在做出反應(yīng)的能力方面,無(wú)監(jiān)督學(xué)習(xí)的能力幾乎達(dá)到人類水平。

Hinton 說(shuō):“如果你采用一個(gè)擁有數(shù)十億參數(shù)的系統(tǒng),對(duì)某個(gè)目標(biāo)函數(shù)執(zhí)行隨機(jī)梯度下降,它的效果會(huì)比你想象的好得多…… 規(guī)模越大,效果越好?!?/p>

“這使得一種說(shuō)法變得更加合理,即大腦計(jì)算某些目標(biāo)函數(shù)的梯度,并根據(jù)梯度更新突觸的強(qiáng)度。我們只需要弄清楚它是如何得到梯度的,以及目標(biāo)函數(shù)是什么?!?/p>

這甚至可能解開(kāi)夢(mèng)的奧秘?!盀槭裁次覀兏静挥浀梦覀冏鲞^(guò)的夢(mèng)呢?”Hinton 反問(wèn)道。

他認(rèn)為這可能與 “忘卻”(unlearning) 有關(guān),他在與人合著的一篇關(guān)于玻爾茲曼機(jī)的論文中解釋了這一理論。玻爾茲曼機(jī)是由對(duì)稱連接的、類似神經(jīng)元的單元組成的網(wǎng)絡(luò),可以隨機(jī)決定是 “on” 還是 “off”。Hinton 說(shuō),“它們發(fā)現(xiàn)…… 觀察到的數(shù)據(jù)不那么令人驚訝”。

Hinton 說(shuō):“夢(mèng)的意義可能在于,你把整個(gè)學(xué)習(xí)過(guò)程顛倒過(guò)來(lái)了?!?/p>

未來(lái)需要真正理解大腦的運(yùn)作方式

Hinton 相信,這些知識(shí)可以改變?cè)S多領(lǐng)域,比如教育。例如,他預(yù)計(jì)教學(xué)課程將考慮人類生物化學(xué),因此會(huì)更加個(gè)性化,更具針對(duì)性。

他說(shuō):“人們可能會(huì)認(rèn)為,如果我們真正理解了大腦,我們應(yīng)該能夠改善教育等方面的狀況,我認(rèn)為這是會(huì)實(shí)現(xiàn)的。”

“如果我們最終能夠了解大腦中正在發(fā)生什么,大腦是如何學(xué)習(xí)的,就能適應(yīng)環(huán)境,從而更好地學(xué)習(xí)?!?/p>

但他也警告說(shuō),這一切都需要時(shí)間。就近期而言,Hinton 設(shè)想了智能助理的未來(lái) —— 比如 Google Assistant 或亞馬遜的 Alexa—— 它們可以與用戶互動(dòng),并在日常生活中為用戶提供引導(dǎo)。

Hinton 總結(jié)說(shuō):“再過(guò)幾年,我不確定我們會(huì)學(xué)到多少東西。但如果你仔細(xì)觀察,你會(huì)發(fā)現(xiàn)智能助理現(xiàn)在已經(jīng)相當(dāng)聰明了。一旦 AI 助理能夠真正理解對(duì)話,它們就能和孩子們真正地交談,并提供教育?!?/p>

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:AI教父Hinton:AI 系統(tǒng)將走向無(wú)監(jiān)督,我們需要真正理解大腦

文章出處:【微信號(hào):AI_era,微信公眾號(hào):新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    無(wú)刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測(cè)方法的研究

    MATLAB/SIMULINK工具對(duì)該方法進(jìn)行驗(yàn)證,實(shí)驗(yàn)結(jié)果表明該方法在全程速度下效果良好。 純分享帖,點(diǎn)擊下方附件免費(fèi)獲取完整資料~~~ *附件:無(wú)刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測(cè)方法的研究.pdf
    發(fā)表于 06-25 13:06

    神經(jīng)網(wǎng)絡(luò)RAS在異步電機(jī)轉(zhuǎn)速估計(jì)中的仿真研究

    ,在一定程度上擴(kuò)展了轉(zhuǎn)速估計(jì)范圍。 純分享帖,需要者可點(diǎn)擊附件免費(fèi)獲取完整資料~~~*附件:神經(jīng)網(wǎng)絡(luò)RAS在異步電機(jī)轉(zhuǎn)速估計(jì)中的仿真研究.pdf【免責(zé)聲明】本文系網(wǎng)絡(luò)轉(zhuǎn)載,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)
    發(fā)表于 06-16 21:54

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?672次閱讀

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Ba
    的頭像 發(fā)表于 02-12 15:15 ?863次閱讀

    深度學(xué)習(xí)入門:簡(jiǎn)單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實(shí)現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個(gè)簡(jiǎn)單的神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)由多個(gè)神經(jīng)元組成,
    的頭像 發(fā)表于 01-23 13:52 ?530次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    所擬合的數(shù)學(xué)模型的形式受到大腦神經(jīng)元的連接和行為的啟發(fā),最初是為了研究大腦功能而設(shè)計(jì)的。然而,數(shù)據(jù)科學(xué)中常用的
    的頭像 發(fā)表于 01-09 10:24 ?1201次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    基于光學(xué)衍射神經(jīng)網(wǎng)絡(luò)的軌道角動(dòng)量復(fù)用全息技術(shù)的設(shè)計(jì)與實(shí)驗(yàn)研究

    隨著神經(jīng)網(wǎng)絡(luò)的發(fā)展,光學(xué)神經(jīng)網(wǎng)絡(luò)(ONN)的研究受到廣泛關(guān)注。研究人員衍射光學(xué)、散射光、光干涉以及光學(xué)傅里葉變換等基礎(chǔ)理論出發(fā),利用各種光
    的頭像 發(fā)表于 12-07 17:39 ?2814次閱讀
    基于光學(xué)衍射<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的軌道角動(dòng)量復(fù)用全息技術(shù)的設(shè)計(jì)與實(shí)驗(yàn)<b class='flag-5'>研究</b>

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實(shí)現(xiàn)工具和框架應(yīng)運(yùn)而生,為研究人員和開(kāi)發(fā)者提供了強(qiáng)大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?671次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見(jiàn)的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1878次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來(lái)在多個(gè)領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識(shí)別、語(yǔ)音識(shí)別和自然語(yǔ)言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個(gè)分支,因其在圖像處理任務(wù)中的卓越性能而受到廣泛關(guān)注。 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:52 ?846次閱讀

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    不熟悉神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí),或者想了解神經(jīng)網(wǎng)絡(luò)如何優(yōu)化加速實(shí)驗(yàn)研究,請(qǐng)繼續(xù)閱讀,探索基于深度學(xué)習(xí)的現(xiàn)代智能化實(shí)驗(yàn)的廣闊應(yīng)用前景。什么是神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-01 08:06 ?666次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來(lái)越多地支持以前無(wú)法實(shí)現(xiàn)或者難以實(shí)現(xiàn)的應(yīng)用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對(duì)人工智能和機(jī)器學(xué)習(xí)的意義。CNN是一種能夠
    發(fā)表于 10-24 13:56

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析 精通的可以討論
    發(fā)表于 09-18 15:14

    FPGA在深度神經(jīng)網(wǎng)絡(luò)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Network, DNN)作為其核心算法之一,在圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理等領(lǐng)域取得了顯著成果。然而,傳統(tǒng)的深度神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-24 10:42 ?1206次閱讀

    如何構(gòu)建多層神經(jīng)網(wǎng)絡(luò)

    構(gòu)建多層神經(jīng)網(wǎng)絡(luò)(MLP, Multi-Layer Perceptron)模型是一個(gè)在機(jī)器學(xué)習(xí)和深度學(xué)習(xí)領(lǐng)域廣泛使用的技術(shù),尤其在處理分類和回歸問(wèn)題時(shí)。在本文中,我們將深入探討如何從頭開(kāi)始構(gòu)建一個(gè)多層神經(jīng)網(wǎng)絡(luò)模型,包括模型設(shè)計(jì)、
    的頭像 發(fā)表于 07-19 17:19 ?1569次閱讀