一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

MEGNet普適性圖神經(jīng)網(wǎng)絡(luò) 精確預(yù)測(cè)分子和晶體性質(zhì)

ExMh_zhishexues ? 來(lái)源:fqj ? 2019-05-16 14:51 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近年來(lái)機(jī)器學(xué)習(xí)算法在包括自然語(yǔ)言處理,圖像識(shí)別等諸多領(lǐng)域大放異彩。得益于如Materials Project1, QM92,3等材料數(shù)據(jù)庫(kù)的不斷完善和發(fā)展,機(jī)器學(xué)習(xí)正在被越來(lái)越多的應(yīng)用在材料學(xué)領(lǐng)域的研究中。然而,由于研究目標(biāo)的單一性,多數(shù)工作仍然局限于解決特定的晶體結(jié)構(gòu)以及特定的材料性質(zhì)預(yù)測(cè)問(wèn)題。一種泛化的,普適性的機(jī)器學(xué)習(xí)模型仍然是材料學(xué)領(lǐng)域研究的重點(diǎn)目標(biāo)。此研究是基于

基于DeepMind建立的圖神經(jīng)網(wǎng)絡(luò)框架。

MEGNet普適性圖神經(jīng)網(wǎng)絡(luò) 精確預(yù)測(cè)分子和晶體性質(zhì)

在材料學(xué)領(lǐng)域,對(duì)分子或晶體結(jié)構(gòu)的特征描述需要滿足平移,轉(zhuǎn)動(dòng),鏡面不變性,以及對(duì)整體結(jié)構(gòu)特異信息的表征。常見(jiàn)的結(jié)構(gòu)特征描述由于其局域性,缺乏對(duì)整體結(jié)構(gòu)信息的表達(dá),因而不具有普適性。圖網(wǎng)絡(luò)模型(graph-network)是一種基于圖論的結(jié)構(gòu)化模型,從理論上完美解決了這一問(wèn)題。在圖論中,圖(graph)由若干給定的頂點(diǎn)(node)及連接頂點(diǎn)的邊(edge)構(gòu)成。運(yùn)用到分子(或晶體)結(jié)構(gòu)中,原子(atom)可以由頂點(diǎn)(node)描述,連接原子之間的化學(xué)鍵(bond)可以由邊(edge)描述,從而可以把一個(gè)個(gè)分子或晶體結(jié)構(gòu)看作一個(gè)個(gè)獨(dú)立的“圖”?;诖祟惸P偷慕Y(jié)構(gòu)描述方法,科研工作者可以開(kāi)發(fā)出針對(duì)任何材料結(jié)構(gòu)或任何物理化學(xué)性質(zhì)的普適性模型。盡管具有理論可行性,此類模型由于模型復(fù)雜度,材料數(shù)據(jù)量的限制,仍很少被應(yīng)用在材料學(xué)領(lǐng)域中4,5。近日,UC San Diego 的 Shyue Ping Ong 課題組基于DeepMind建立的圖神經(jīng)網(wǎng)絡(luò)框架6,開(kāi)發(fā)了一套分子和晶體通用性質(zhì)預(yù)測(cè)模型(MEGNet),在各項(xiàng)性質(zhì)預(yù)測(cè)測(cè)試中達(dá)到了領(lǐng)先水平7。

MEGNet普適性圖神經(jīng)網(wǎng)絡(luò) 精確預(yù)測(cè)分子和晶體性質(zhì)

圖 1. MEGNet 概述。每個(gè)分子/晶體結(jié)構(gòu)由化學(xué)鍵信息,原子信息,和狀態(tài)信息描述。每個(gè)結(jié)構(gòu)描述輸入模型后,依次更新,直到總的結(jié)構(gòu)輸出性質(zhì)與DFT計(jì)算值接近。

圖1中描述了該模型的工作模式: 每個(gè)結(jié)構(gòu)可用三個(gè)向量表征,分別包含原子信息,化學(xué)鍵信息,和狀態(tài)函數(shù)信息。在每一次模型訓(xùn)練迭代中,依次更新化學(xué)鍵向量,原子向量,和狀態(tài)函數(shù)向量,得到新的結(jié)構(gòu)表征向量,直到通過(guò)該表征輸出的性質(zhì)與DFT計(jì)算結(jié)果趨于一致。作者首先用QM9 分子數(shù)據(jù)集中超過(guò)130k數(shù)據(jù)作為訓(xùn)練集訓(xùn)練模型,并用得到的模型預(yù)測(cè)分子中的13項(xiàng)物理化學(xué)性質(zhì),在其中的11項(xiàng)中達(dá)到同類模型中的最優(yōu)結(jié)果(表1)。更為先進(jìn)的是,之前的工作對(duì)由狀態(tài)參數(shù)關(guān)聯(lián)的狀態(tài)函數(shù),如內(nèi)能(U0, U),焓(H),和吉布斯自由能(G),采用的是分別訓(xùn)練模型進(jìn)行預(yù)測(cè)的方法。

然而本工作中,作者采用加入狀態(tài)參數(shù)作為輸入的方法,可由單一模型同時(shí)預(yù)測(cè)U0, U, H和G,并保持與分別模型訓(xùn)練類似的準(zhǔn)確度,大大提高了訓(xùn)練效率[YZ1]。在針對(duì)晶體結(jié)構(gòu)的應(yīng)用中,作者用Materials Project數(shù)據(jù)庫(kù)中超過(guò)69k數(shù)據(jù)作為訓(xùn)練集,針對(duì)生成能,能帶帶隙,體積模量和剪切模量進(jìn)行了回歸(Regression)分析,并用帶隙值作為金屬和非金屬的判據(jù)進(jìn)行分類(classification)分析。回歸分析中的平均絕對(duì)誤差(MAE)低于同類型模型SchNet4和CGCNN5(表2),金屬和非金屬分類分析中綜合準(zhǔn)確率達(dá)86.9%,ROC中AUC達(dá)到0.926,與此前最優(yōu)模型CGCNN類似。

表1. 不同模型在QM9上預(yù)測(cè)13項(xiàng)性質(zhì)的平均絕對(duì)誤差(MAE)對(duì)比

MEGNet普適性圖神經(jīng)網(wǎng)絡(luò) 精確預(yù)測(cè)分子和晶體性質(zhì)

表2. MEGNet和其他基于圖像模型

在Materials Project數(shù)據(jù)集的預(yù)測(cè)準(zhǔn)確度對(duì)比

MEGNet普適性圖神經(jīng)網(wǎng)絡(luò) 精確預(yù)測(cè)分子和晶體性質(zhì)

在對(duì)模型的深入分析中,作者發(fā)現(xiàn),從最優(yōu)模型中提取出的元素映射(embedding)與化學(xué)常識(shí)吻合。例如,將元素映射投影二維空間可發(fā)現(xiàn),Eu和Yb與其他鑭系元素距離較遠(yuǎn),而與堿土金屬更接近,這與化學(xué)經(jīng)驗(yàn)相符。這樣的分析一方面佐證了模型可以學(xué)習(xí)到可靠的化學(xué)信息,另一方面可將學(xué)習(xí)到的化學(xué)信息用于遷移學(xué)習(xí),以大大降低訓(xùn)練新模型訓(xùn)練所需數(shù)據(jù)量。例如,在此例中,作者通過(guò)用~69k生成熱的數(shù)據(jù)訓(xùn)練的模型提取的元素映射,用于預(yù)測(cè)帶隙和彈性性質(zhì)的模型訓(xùn)練,后者的數(shù)據(jù)量只有生成熱的一半甚至十分之一。通過(guò)遷移學(xué)習(xí)的方法作者得到比直接訓(xùn)練更低的MAE和提高兩倍的收斂速度。這為小數(shù)據(jù)量的性質(zhì)的高效準(zhǔn)確模型訓(xùn)練提供了可行的方案。

在模型的使用方面,用戶可登陸http://megnet.crystals.ai,根據(jù)提示輸入晶體結(jié)構(gòu)編碼或cif文件即可得到模型預(yù)測(cè)的性質(zhì)。另外,文章所涉及的Python代碼均已開(kāi)源(https://github.com/materialsvirtuallab/megnet.git)。下面示例如何使用已有模型和訓(xùn)練新的模型。

1示例一: 使用分子模型

MEGNet普適性圖神經(jīng)網(wǎng)絡(luò) 精確預(yù)測(cè)分子和晶體性質(zhì)

2示例二:使用晶體模型預(yù)測(cè)剪切模量

MEGNet普適性圖神經(jīng)網(wǎng)絡(luò) 精確預(yù)測(cè)分子和晶體性質(zhì)

3示例三:訓(xùn)練新模型

MEGNet普適性圖神經(jīng)網(wǎng)絡(luò) 精確預(yù)測(cè)分子和晶體性質(zhì)

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:MEGNet普適性圖神經(jīng)網(wǎng)絡(luò),精確預(yù)測(cè)分子和晶體性質(zhì)

文章出處:【微信號(hào):zhishexueshuquan,微信公眾號(hào):知社學(xué)術(shù)圈】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    無(wú)刷電機(jī)小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測(cè)方法的研究

    摘要:論文通過(guò)對(duì)無(wú)刷電機(jī)數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個(gè)以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來(lái)實(shí)現(xiàn)轉(zhuǎn)角預(yù)測(cè),并采用改進(jìn)遺傳算法來(lái)訓(xùn)練網(wǎng)絡(luò)結(jié)構(gòu)與參數(shù),借助
    發(fā)表于 06-25 13:06

    NVIDIA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)渲染技術(shù)的突破增強(qiáng)功能

    近日,NVIDIA 宣布了 NVIDIA RTX 神經(jīng)網(wǎng)絡(luò)渲染技術(shù)的突破增強(qiáng)功能。NVIDIA 與微軟合作,將在 4 月的 Microsoft DirectX 預(yù)覽版中增加神經(jīng)網(wǎng)絡(luò)著色技術(shù),讓開(kāi)
    的頭像 發(fā)表于 04-07 11:33 ?439次閱讀

    使用BP神經(jīng)網(wǎng)絡(luò)進(jìn)行時(shí)間序列預(yù)測(cè)

    使用BP(Backpropagation)神經(jīng)網(wǎng)絡(luò)進(jìn)行時(shí)間序列預(yù)測(cè)是一種常見(jiàn)且有效的方法。以下是一個(gè)基于BP神經(jīng)網(wǎng)絡(luò)進(jìn)行時(shí)間序列預(yù)測(cè)的詳細(xì)步驟和考慮因素: 一、數(shù)據(jù)準(zhǔn)備 收集數(shù)據(jù) :
    的頭像 發(fā)表于 02-12 16:44 ?767次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?658次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過(guò)訓(xùn)練數(shù)據(jù)自動(dòng)調(diào)整網(wǎng)絡(luò)參數(shù),實(shí)現(xiàn)對(duì)輸入數(shù)據(jù)的分類、回歸等任務(wù),無(wú)需人工進(jìn)行復(fù)雜的特征工程。 泛化能力強(qiáng) : BP神經(jīng)網(wǎng)絡(luò)通過(guò)訓(xùn)練數(shù)據(jù)學(xué)習(xí)到的特征表示,能夠?qū)ξ粗獢?shù)據(jù)進(jìn)行
    的頭像 發(fā)表于 02-12 15:36 ?909次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    神經(jīng)網(wǎng)絡(luò)(即反向傳播神經(jīng)網(wǎng)絡(luò))的核心,它建立在梯度下降法的基礎(chǔ)上,是一種適合于多層神經(jīng)元網(wǎng)絡(luò)的學(xué)習(xí)算法。該算法通過(guò)計(jì)算每層網(wǎng)絡(luò)的誤差,并將這些誤差反向傳播到前一層,從而調(diào)整權(quán)重,使得
    的頭像 發(fā)表于 02-12 15:18 ?763次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?850次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1178次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    基于光學(xué)衍射神經(jīng)網(wǎng)絡(luò)的軌道角動(dòng)量復(fù)用全息技術(shù)的設(shè)計(jì)與實(shí)驗(yàn)研究

    光學(xué)晶體、光電器件、空間光調(diào)制器等實(shí)現(xiàn)光學(xué)非線性激活功能,進(jìn)一步優(yōu)化ONN的預(yù)測(cè)及推理能力,極大地促進(jìn)了光學(xué)神經(jīng)網(wǎng)絡(luò)的發(fā)展?;诳臻g光調(diào)制器的靈活可編程特性,為光路的優(yōu)化及實(shí)驗(yàn)實(shí)現(xiàn)提供了較大的助力。? 論文信息 軌道角
    的頭像 發(fā)表于 12-07 17:39 ?2805次閱讀
    基于光學(xué)衍射<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的軌道角動(dòng)量復(fù)用全息技術(shù)的設(shè)計(jì)與實(shí)驗(yàn)研究

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見(jiàn)的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:53 ?1862次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1124次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機(jī)制

    LSTM(Long Short-Term Memory,長(zhǎng)短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),設(shè)計(jì)用于解決長(zhǎng)期依賴問(wèn)題,特別是在處理時(shí)間序列數(shù)據(jù)時(shí)表現(xiàn)出色。以下是LSTM神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-13 10:05 ?1628次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)在時(shí)間序列預(yù)測(cè)中的應(yīng)用

    時(shí)間序列預(yù)測(cè)是數(shù)據(jù)分析中的一個(gè)重要領(lǐng)域,它涉及到基于歷史數(shù)據(jù)預(yù)測(cè)未來(lái)值。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,長(zhǎng)短期記憶(LSTM)神經(jīng)網(wǎng)絡(luò)因其在處理序列數(shù)據(jù)方面的優(yōu)勢(shì)而受到廣泛關(guān)注。 LSTM神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-13 09:54 ?2027次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    。 2.一個(gè)小型神經(jīng)網(wǎng)絡(luò) 3.用CIFAR-10數(shù)據(jù)集訓(xùn)練的CIFAR網(wǎng)絡(luò)模型 CIFAR-10是一個(gè)特定數(shù)據(jù)集,通常用于訓(xùn)練CIFAR
    發(fā)表于 10-24 13:56

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14