一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

ICML 2019最佳論文新鮮出爐!

DPVg_AI_era ? 來(lái)源:lq ? 2019-06-15 10:02 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

今日,國(guó)際機(jī)器學(xué)習(xí)頂會(huì)ICML公布2019年最佳論文獎(jiǎng):來(lái)自蘇黎世聯(lián)邦理工大學(xué)、谷歌大腦等的團(tuán)隊(duì)和英國(guó)劍橋大學(xué)團(tuán)隊(duì)獲此殊榮。另外,大會(huì)還公布了7篇獲最佳論文提名的論文。

ICML 2019最佳論文新鮮出爐!

今日,國(guó)際機(jī)器學(xué)習(xí)頂會(huì)ICML 2019于美國(guó)長(zhǎng)灘市公布了本屆大會(huì)最佳論文結(jié)果:

本屆ICML兩篇最佳論文分別是:

《挑戰(zhàn)無(wú)監(jiān)督解耦表示中的常見(jiàn)假設(shè)》,來(lái)自蘇黎世聯(lián)邦理工學(xué)院(ETH Zurich)、MaxPlanck 智能系統(tǒng)研究所及谷歌大腦;

《稀疏高斯過(guò)程回歸變分的收斂速度》,來(lái)自英國(guó)劍橋大學(xué)。

除此之外,大會(huì)還公布了七篇獲得提名獎(jiǎng)(Honorable Mentions)論文。

據(jù)了解,今年ICML共提交3424篇論文,其中錄取774篇,論文錄取率為22.6%。錄取率較去年ICML 2018的25%有所降低。

論文錄取結(jié)果地址:

https://icml.cc/Conferences/2019/AcceptedPapersInitial?fbclid=IwAR0zqRJfPz2UP7dCbZ8Jcy7MrsedhasX13ueqkKl934EsksuSj3J2QrrRAQ

提交論文最多的子領(lǐng)域分別是:深度學(xué)習(xí)、通用機(jī)器學(xué)習(xí)、強(qiáng)化學(xué)習(xí)、優(yōu)化等

最佳論文:大規(guī)模深入研究無(wú)監(jiān)督解耦表示

第一篇最佳論文的作者來(lái)自蘇黎世聯(lián)邦理工學(xué)院(ETH Zurich)、MaxPlanck 智能系統(tǒng)研究所及谷歌大腦。

論文標(biāo)題:挑戰(zhàn)無(wú)監(jiān)督解耦表示中的常見(jiàn)假設(shè)

Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

作者:Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar R?tsch, Sylvain Gelly, Bernhard Sch?lkopf, Olivier Bachem

論文地址:

http://proceedings.mlr.press/v97/locatello19a/locatello19a.pdf

這是一篇大規(guī)模深入研究無(wú)監(jiān)督解耦表示(Disentangled Representation)的論文,對(duì)近年來(lái)絕大多數(shù)的非監(jiān)督解耦表示方法進(jìn)行了探索、利用 2.5GPU 年的算力在 7 個(gè)數(shù)據(jù)集上訓(xùn)練了 12000 多個(gè)模型?;诖笠?guī)模的實(shí)驗(yàn)結(jié)果,研究人員對(duì)這一領(lǐng)域的一些假設(shè)產(chǎn)生了質(zhì)疑,并為解耦學(xué)習(xí)的未來(lái)發(fā)展方向給出了建議。此外,研究人員還同時(shí)發(fā)布了研究中所使用的代碼和上萬(wàn)個(gè)預(yù)訓(xùn)練模型,并封裝了 disentanglement_lib供研究者進(jìn)行實(shí)驗(yàn)復(fù)現(xiàn)和更深入的探索。

論文摘要

無(wú)監(jiān)督學(xué)習(xí)解耦表示背后的關(guān)鍵思想是,真實(shí)世界數(shù)據(jù)是由一些變量的解釋因子生成的,這些因子可以通過(guò)無(wú)監(jiān)督學(xué)習(xí)算法恢復(fù)。在本文中,我們認(rèn)真回顧了該領(lǐng)域的最新進(jìn)展,并對(duì)一些常見(jiàn)假設(shè)提出挑戰(zhàn)。

我們首先從理論上證明,如果沒(méi)有對(duì)模型和數(shù)據(jù)的歸納偏置,解耦表示的無(wú)監(jiān)督學(xué)習(xí)基本上是不可能的。然后,我們?cè)?個(gè)不同數(shù)據(jù)集上訓(xùn)練了超過(guò)12000個(gè)模型,涵蓋了最重要的方法和評(píng)估指標(biāo),進(jìn)行了可重復(fù)的大規(guī)模實(shí)驗(yàn)研究。

我們觀察到,雖然不同的方法都成功地執(zhí)行了相應(yīng)損失“鼓勵(lì)”的屬性,但如果沒(méi)有監(jiān)督,似乎無(wú)法識(shí)別出良好解耦的模型。此外,增加解耦似乎不會(huì)降低下游任務(wù)學(xué)習(xí)的樣本復(fù)雜度。

我們的研究結(jié)果表明,未來(lái)關(guān)于解耦學(xué)習(xí)的工作應(yīng)該明確歸納偏見(jiàn)和(隱式)監(jiān)督的作用,研究強(qiáng)制解耦學(xué)習(xí)表示的具體好處,并考慮覆蓋多個(gè)數(shù)據(jù)集的可重復(fù)的實(shí)驗(yàn)設(shè)置。

本文從理論和實(shí)踐兩方面對(duì)這一領(lǐng)域中普遍存在的一些假設(shè)提出了挑戰(zhàn)。本研究的主要貢獻(xiàn)可概括如下:

我們?cè)诶碚撋献C明,如果沒(méi)有對(duì)所考慮的學(xué)習(xí)方法和數(shù)據(jù)集產(chǎn)生歸納偏置,那么解耦表示的無(wú)監(jiān)督學(xué)習(xí)基本上是不可能的。

我們?cè)谝豁?xiàng)可重復(fù)的大規(guī)模實(shí)驗(yàn)研究中研究了當(dāng)前的方法及其歸納偏置,該研究采用了完善的無(wú)監(jiān)督解耦學(xué)習(xí)實(shí)驗(yàn)方案。我們實(shí)現(xiàn)了六種最新的無(wú)監(jiān)督解耦學(xué)習(xí)方法以及六種從頭開(kāi)始的解耦方法,并在七個(gè)數(shù)據(jù)集上訓(xùn)練了超過(guò)12000個(gè)模型。

我們發(fā)布了disentanglement_lib,這是一個(gè)用于訓(xùn)練和評(píng)估解耦表示的新庫(kù)。由于復(fù)制我們的結(jié)果需要大量的計(jì)算工作,我們還發(fā)布了超過(guò)10000個(gè)預(yù)訓(xùn)練的模型,可以作為未來(lái)研究的基線(xiàn)。

我們分析實(shí)驗(yàn)結(jié)果,并挑戰(zhàn)了無(wú)監(jiān)督解耦學(xué)習(xí)中的一些共識(shí):

(i)雖然所有考慮的方法都證明有效確保聚合后驗(yàn)的各個(gè)維度不相關(guān),我們觀察到的表示維度是相關(guān)的

(ii)由于random seeds和超參數(shù)似乎比模型選擇更重要,我們沒(méi)有發(fā)現(xiàn)任何證據(jù)表明所考慮的模型可以用于以無(wú)監(jiān)督的方式可靠地學(xué)習(xí)解耦表示。此外,如果不訪(fǎng)問(wèn)ground-truth標(biāo)簽,即使允許跨數(shù)據(jù)集傳輸良好的超參數(shù)值,似乎也無(wú)法識(shí)別良好訓(xùn)練的模型。

(iii)對(duì)于所考慮的模型和數(shù)據(jù)集,我們無(wú)法驗(yàn)證以下假設(shè),即解耦對(duì)于下游任務(wù)是有用的,例如通過(guò)降低學(xué)習(xí)的樣本復(fù)雜性。

基于這些實(shí)證證據(jù),我們提出了進(jìn)一步研究的三個(gè)關(guān)鍵領(lǐng)域:

(i)歸納偏置的作用以及隱性和顯性監(jiān)督應(yīng)該明確:無(wú)監(jiān)督模型選擇仍然是一個(gè)關(guān)鍵問(wèn)題。

(ii) 應(yīng)證明強(qiáng)制執(zhí)行學(xué)習(xí)表示的特定解耦概念的具體實(shí)際好處。

(iii) 實(shí)驗(yàn)應(yīng)在不同難度的數(shù)據(jù)集上建立可重復(fù)的實(shí)驗(yàn)設(shè)置。

最佳論文:稀疏高斯過(guò)程回歸變分的收斂速度

第二篇最佳論文來(lái)自英國(guó)劍橋大學(xué)。

論文標(biāo)題:《稀疏高斯過(guò)程回歸變分的收斂速度》

Rates of Convergence for Sparse Variational Gaussian Process Regression

作者:DavidR. Burt1,Carl E. Rasmussen1,Mark van der Wilk2

arXiv地址:

https://arxiv.org/pdf/1903.03571.pdf

論文摘要

自從許多研究人提出了對(duì)高斯過(guò)程后驗(yàn)的變分近似法后,避免了數(shù)據(jù)集大小為N時(shí)O(N3)的縮放。它們將計(jì)算成本降低到O(NM2),其中M≤N是誘導(dǎo)變量的數(shù)量。雖然N的計(jì)算成本似乎是線(xiàn)性的,但算法的真正復(fù)雜性取決于M如何增加以確保一定的近似質(zhì)量。

研究人員通過(guò)描述KL向后發(fā)散的上界行為來(lái)解決這個(gè)問(wèn)題。證明了在高概率下,M的增長(zhǎng)速度比N慢, KL的發(fā)散度可以任意地減小。

一個(gè)特別有趣的例子是,對(duì)于具有D維度的正態(tài)分布輸入的回歸,使用流行的 Squared Exponential核M就足夠了。研究結(jié)果表明,隨著數(shù)據(jù)集的增長(zhǎng),高斯過(guò)程后驗(yàn)可以真正近似地逼近,并為如何在連續(xù)學(xué)習(xí)場(chǎng)景中增加M提供了具體的規(guī)則。

總結(jié)

研究人員證明了稀疏GP回歸變分近似到后驗(yàn)變分近似的KL發(fā)散的界限,該界限僅依賴(lài)于先驗(yàn)核的協(xié)方差算子的特征值的衰減。

這些邊界證明了直觀的結(jié)果,平滑的核、訓(xùn)練數(shù)據(jù)集中在一個(gè)小區(qū)域,允許高質(zhì)量、非常稀疏的近似。這些邊界證明了用M≤N進(jìn)行真正稀疏的非參數(shù)推理仍然可以提供可靠的邊際似然估計(jì)和點(diǎn)后驗(yàn)估計(jì)。

對(duì)非共軛概率模型的擴(kuò)展,是未來(lái)研究的一個(gè)有前景的方向。

DeepMind、牛津、MIT等7篇最佳論文提名

除了最佳論文外,本次大會(huì)還公布了7篇獲得榮譽(yù)獎(jiǎng)的論文。

Analogies Explained: Towards Understanding Word Embeddings

作者:CarlAllen1,Timothy Hospedales1,來(lái)自愛(ài)丁堡大學(xué)。

論文地址:https://arxiv.org/pdf/1901.09813.pdf

SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver

作者:Po-WeiWang1,Priya L. Donti1 2,Bryan Wilder3,Zico Kolter1 4,分別來(lái)自卡耐基梅隆大學(xué)、南加州大學(xué)、Bosch Center for Artificial Intelligence。

論文地址:https://arxiv.org/pdf/1905.12149.pdf

A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks

作者:Umut?im?ekli?,L, event Sagun?, Mert Gürbüzbalaban?,分別來(lái)自巴黎薩克雷大學(xué)、洛桑埃爾科爾理工大學(xué)、羅格斯大學(xué)。

論文地址:https://arxiv.org/pdf/1901.06053.pdf

Towards A Unified Analysis of Random Fourier Features

作者:Zhu Li,Jean-Fran?ois Ton,Dino Oglic,Dino Sejdinovic,分別來(lái)自牛津大學(xué)、倫敦國(guó)王學(xué)院。

論文地址:https://arxiv.org/pdf/1806.09178.pdf

Amortized Monte Carlo Integration

作者:Adam Golinski、Yee Whye Teh、Frank Wood、Tom Rainforth,分別來(lái)自牛津大學(xué)和英屬哥倫比亞大學(xué)。

論文地址:http://www.gatsby.ucl.ac.uk/~balaji/udl-camera-ready/UDL-12.pdf

Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning

作者:Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro A. Ortega, DJ Strouse, Joel Z. Leibo, Nando de Freitas,分別來(lái)自MIT媒體實(shí)驗(yàn)室、DeepMind和普林斯頓大學(xué)。

論文地址:https://arxiv.org/pdf/1810.08647.pdf

Stochastic Beams and Where to Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement

作者:Wouter Kool, Herke van Hoof, Max Welling,分別來(lái)自荷蘭阿姆斯特丹大學(xué),荷蘭ORTEC和加拿大高等研究所(CIFAR)。

論文地址:https://arxiv.org/pdf/1903.06059.pdf

ICML 2019:谷歌成為最大贏家,清北、南大港中文榜上有名

本次大會(huì)還統(tǒng)計(jì)了收錄論文的領(lǐng)域分布情況:

提交論文最多的子領(lǐng)域分別是:深度學(xué)習(xí)、通用機(jī)器學(xué)習(xí)、強(qiáng)化學(xué)習(xí)、優(yōu)化等。

而早在上個(gè)月,Reddit網(wǎng)友就發(fā)表了他和他的公司對(duì)本次ICML 2019論文錄取情況的統(tǒng)計(jì)結(jié)果。

地址:

https://www.reddit.com/r/MachineLearning/comments/bn82ze/n_icml_2019_accepted_paper_stats/

今年,在所有錄取的論文中,谷歌無(wú)疑成為了最大贏家。

錄取論文總數(shù)排名(按研究所)

上表顯示了以研究所(包括產(chǎn)業(yè)界和學(xué)術(shù)界)為單位,錄取論文總數(shù)的排名。這項(xiàng)統(tǒng)計(jì)中至少有一位作者隸屬于某研究所,因此一篇論文可以出現(xiàn)多次且隸屬多個(gè)研究所。

排名地址:

https://i.redd.it/wdbw91yheix21.png

其中,藍(lán)色代表論文總數(shù),綠色和紅色分別代表第一作者和通訊作者參與錄取論文的論文數(shù)量。并且,附屬機(jī)構(gòu)是手動(dòng)合并到研究所的,例如Google Inc.、Google AI、Google UK都將映射到Google。

可以看到谷歌錄取論文的數(shù)量遠(yuǎn)超其它研究所,位列第一;緊隨其后的是MIT、伯克利、谷歌大腦、斯坦福、卡內(nèi)基梅隆以及微軟。

作者還分別根據(jù)學(xué)界和產(chǎn)業(yè)界進(jìn)行了統(tǒng)計(jì)Top 50排名。

排名統(tǒng)計(jì)可視化地址:

https://i.redd.it/37hxhsmfzix21.png

在學(xué)界排名中,MIT、加州伯克利分校、斯坦福和卡內(nèi)基梅隆奪冠前四,成為本屆錄取論文數(shù)的第一梯隊(duì),且與第二梯隊(duì)拉開(kāi)了一定差距。

國(guó)內(nèi)上榜的院校包括清華大學(xué)、北京大學(xué)、南京大學(xué)、香港中文大學(xué)。

排名可視化地址:

https://i.redd.it/wa6kjzmhzix21.png

在企業(yè)研究所Top 50排名中,谷歌無(wú)疑成為最大贏家:谷歌、谷歌大腦和谷歌DeepMind分別取得第一、第二和第四的好成績(jī)。微軟、Facebook和IBM成績(jī)也較優(yōu)異,位居第三、第五和第六。

而對(duì)于國(guó)內(nèi)企業(yè),騰訊(Tencent)成績(jī)較好,位居第八名。

此外,從本屆ICML 2019錄取論文情況來(lái)看,還可以得到如下統(tǒng)計(jì):

452篇論文(58.4%)純屬學(xué)術(shù)研究;

60篇論文(7.8%)來(lái)自工業(yè)研究機(jī)構(gòu);

262篇論文(33.9%)作者隸屬于學(xué)術(shù)界和工業(yè)界。

總結(jié)上述的統(tǒng)計(jì),我們可以得到如下結(jié)果:

77%的貢獻(xiàn)來(lái)自學(xué)術(shù)界;

23%的貢獻(xiàn)來(lái)自產(chǎn)業(yè)界。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 智能系統(tǒng)
    +關(guān)注

    關(guān)注

    2

    文章

    407

    瀏覽量

    73251
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8500

    瀏覽量

    134442
  • 論文
    +關(guān)注

    關(guān)注

    1

    文章

    103

    瀏覽量

    15191

原文標(biāo)題:ICML 2019最佳論文出爐,超高數(shù)學(xué)難度!ETH、谷歌、劍橋分獲大獎(jiǎng)

文章出處:【微信號(hào):AI_era,微信公眾號(hào):新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    后摩智能與高校合作研究成果榮獲ISCA 2025最佳論文獎(jiǎng)

    》,成功榮獲第52屆計(jì)算機(jī)體系結(jié)構(gòu)國(guó)際研討會(huì)(ISCA)最佳論文獎(jiǎng)。作為國(guó)內(nèi)學(xué)術(shù)機(jī)構(gòu)在該會(huì)議上的首次獲獎(jiǎng)成果,其核心創(chuàng)新聚焦于邊緣側(cè)大語(yǔ)言模型(LLM)推理加速架構(gòu)的關(guān)鍵技術(shù)突破,為解決邊緣設(shè)備高效LLM推理難題提供了創(chuàng)新性方案。
    的頭像 發(fā)表于 07-05 11:21 ?355次閱讀

    思必馳與上海交大聯(lián)合實(shí)驗(yàn)室兩篇論文入選ICML 2025

    ICML(International Conference on Machine Learning)是機(jī)器學(xué)習(xí)領(lǐng)域的頂級(jí)學(xué)術(shù)會(huì)議之一,由國(guó)際機(jī)器學(xué)習(xí)學(xué)會(huì)(IMLS)主辦,被中國(guó)計(jì)算機(jī)學(xué)會(huì)認(rèn)定為A類(lèi)
    的頭像 發(fā)表于 06-16 09:23 ?586次閱讀
    思必馳與上海交大聯(lián)合實(shí)驗(yàn)室兩篇<b class='flag-5'>論文</b>入選<b class='flag-5'>ICML</b> 2025

    后摩智能四篇論文入選三大國(guó)際頂會(huì)

    2025 年上半年,繼年初被 AAAI、ICLR、DAC 三大國(guó)際頂會(huì)收錄 5 篇論文后,后摩智能近期又有 4 篇論文入選CVPR、ICML、ACL三大國(guó)際頂會(huì),面向大模型的編碼、量化、壓縮與微調(diào)等技術(shù)難題提出創(chuàng)新性解決方案,為
    的頭像 發(fā)表于 05-29 15:37 ?324次閱讀

    恩智浦發(fā)布2024年企業(yè)可持續(xù)發(fā)展報(bào)告

    恩智浦《2024年企業(yè)可持續(xù)發(fā)展報(bào)告》新鮮出爐,全面總結(jié)了2024年恩智浦在可持續(xù)發(fā)展方面取得的進(jìn)展和主要成就。
    的頭像 發(fā)表于 04-28 11:24 ?964次閱讀

    2025 Electronica Demo前沿 | Samtec線(xiàn)纜動(dòng)態(tài)彎曲測(cè)試

    ! 今天,我們將為大家?guī)?lái)展會(huì)上新鮮出爐的Demo細(xì)節(jié)分享。 本次Demo邀請(qǐng)到了合作伙伴Keysight,由Keysight市場(chǎng)經(jīng)理郭琳與Samtec資深FAE胡亞捷主講,使用了Keysight
    發(fā)表于 04-23 14:05 ?959次閱讀

    2024施耐德電氣“可持續(xù)影響力獎(jiǎng)”重磅出爐

    2024施耐德電氣“可持續(xù)影響力獎(jiǎng)”,國(guó)家及區(qū)域評(píng)選結(jié)果重磅出爐!憑借在可持續(xù)發(fā)展領(lǐng)域的卓越表現(xiàn),中國(guó)區(qū)遴選出13家獲獎(jiǎng)企業(yè)!
    的頭像 發(fā)表于 03-10 11:32 ?558次閱讀

    隆基Hi-MO 9組件西安實(shí)證數(shù)據(jù)揭曉

    近日,在陜西省西安市某商業(yè)建筑屋頂?shù)膶?shí)證平臺(tái)上,一項(xiàng)為期8個(gè)月的光伏組件發(fā)電性能對(duì)比實(shí)驗(yàn)結(jié)果新鮮出爐。
    的頭像 發(fā)表于 03-07 15:24 ?473次閱讀
    隆基Hi-MO 9組件西安實(shí)證數(shù)據(jù)揭曉

    美報(bào)告:中國(guó)芯片研究論文全球領(lǐng)先

    據(jù)新華社報(bào)道,美國(guó)喬治敦大學(xué)“新興技術(shù)觀察項(xiàng)目(ETO)”3日在其網(wǎng)站發(fā)布一份報(bào)告說(shuō),2018年至2023年間,在全球發(fā)表的芯片設(shè)計(jì)和制造相關(guān)論文中,中國(guó)研究人員的論文數(shù)量遠(yuǎn)超其他國(guó)家,中國(guó)在高被
    的頭像 發(fā)表于 03-05 14:32 ?1042次閱讀

    華邦電子安全閃存關(guān)鍵知識(shí)點(diǎn)

    博士開(kāi)啟寵粉模式,打包放送關(guān)于安全閃存的十大硬核問(wèn)答,文末更有新鮮出爐的干貨《滿(mǎn)足歐盟“無(wú)線(xiàn)電設(shè)備指令”(RED)信息安全標(biāo)準(zhǔn)》白皮書(shū)供您下載!
    的頭像 發(fā)表于 02-12 18:15 ?729次閱讀

    [求職] RK3588核心板,尋找志同道合的電子發(fā)燒友!

    基本信息 姓名: RK3588核心板 性別: 男 年齡: 新鮮出爐 聯(lián)系方式: 13632965530 期望職位: 智能硬件開(kāi)發(fā)平臺(tái)、邊緣計(jì)算平臺(tái)、AIoT應(yīng)用開(kāi)發(fā)平臺(tái) 期望薪資
    發(fā)表于 02-11 10:49

    廣電計(jì)量新年首篇深度研究報(bào)告出爐

    新年伊始,廣電計(jì)量首篇深度研究報(bào)告出爐,公司憑借全面發(fā)展的企業(yè)實(shí)力和資本市場(chǎng)的優(yōu)異表現(xiàn)在新的一年獲得資本市場(chǎng)的認(rèn)可。
    的頭像 發(fā)表于 01-03 11:31 ?740次閱讀

    比亞迪獲評(píng)AUTOBEST 2025年度最佳企業(yè)

    近日,歐洲最大獨(dú)立汽車(chē)媒體評(píng)獎(jiǎng)機(jī)構(gòu)AUTOBEST年度評(píng)選結(jié)果出爐,歐洲31國(guó)汽車(chē)媒體組成的評(píng)審團(tuán)一致授予比亞迪“2025年度最佳企業(yè)”稱(chēng)號(hào)。繼去年AUTOBEST將海豚(BYD DOLPHIN)評(píng)為“2024年度歐洲最值得購(gòu)買(mǎi)汽車(chē)”后,這一榮譽(yù)是對(duì)比亞迪全球汽車(chē)市場(chǎng)成就
    的頭像 發(fā)表于 12-17 14:12 ?687次閱讀

    安波福蘇州榮獲“2024大蘇州最佳雇主”及“2024最佳HR團(tuán)隊(duì)獎(jiǎng)”

    日前,“2024第十一屆大蘇州最佳雇主”頒獎(jiǎng)盛典隆重舉行。安波福電子(蘇州)有限公司獲頒“2024大蘇州最佳雇主”及“2024最佳HR團(tuán)隊(duì)獎(jiǎng)”。
    的頭像 發(fā)表于 10-14 09:54 ?1309次閱讀

    中科馭數(shù)聯(lián)合處理器芯片全國(guó)重點(diǎn)實(shí)驗(yàn)室獲得“CCF芯片大會(huì)最佳論文獎(jiǎng)”

    Accelerator on FPGA with Graph Reordering Engine》獲得“CCF芯片大會(huì)最佳論文獎(jiǎng)”。該項(xiàng)工作由鄢貴海研究員指導(dǎo)完成,論文第一作者是博士研究生樊海爽,
    的頭像 發(fā)表于 08-02 11:09 ?1003次閱讀

    Samtec在2024慕尼黑上海電子展精彩回顧

    近日,2024慕尼黑上海電子展在上海新國(guó)際博覽中心圓滿(mǎn)落幕,Samtec虎家團(tuán)隊(duì)為觀眾帶來(lái)了前所未有的豐富體驗(yàn):產(chǎn)品講解、采訪(fǎng)、Demo演示、直播互動(dòng)等~進(jìn)擊的老虎 | Samtec亮相慕尼黑上海電子展 今天,我們將為大家?guī)?lái)展會(huì)上新鮮出爐的Demo細(xì)節(jié)分享。
    的頭像 發(fā)表于 07-17 11:27 ?1114次閱讀
    Samtec在2024慕尼黑上海電子展精彩回顧