一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

盤點一下mAP最高的目標(biāo)檢測算法

DPVg_AI_era ? 來源:lq ? 2019-07-13 08:10 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

目標(biāo)檢測中存在兩個非常重要的性能:精度和速度,特指mAP和FPS。本文便對mAP最高的目標(biāo)檢測算法進(jìn)行了盤點。

趁最近目標(biāo)檢測(Object Detection)方向的論文更新較少,趕緊做個"最強(qiáng)目標(biāo)檢測算法"大盤點。

要知道衡量目標(biāo)檢測最重要的兩個性能就是精度和速度,特指mAP 和 FPS。其實現(xiàn)在大多數(shù)論文要么強(qiáng)調(diào) mAP 很高,要么就是強(qiáng)調(diào) mAP 和 FPS 之間 Trade-off 有多好。

本文就來盤點一下mAP 最高的目標(biāo)檢測算法,小編將在COCO數(shù)據(jù)集上 mAP 最高的算法認(rèn)為是"性能最強(qiáng)"目標(biāo)檢測算法。(COCO數(shù)據(jù)集是現(xiàn)在最主流的目標(biāo)檢測數(shù)據(jù)集,這一點看最新的頂會論文就知道了)

時間:2019.07.07

盤點內(nèi)容:目標(biāo)檢測 mAP 最高的算法

說到目標(biāo)檢測算法,大家腦子里最先蹦出來的算法應(yīng)該是 Faster R-CNN 和 YOLOv3。這一點在我調(diào)研的時候,從大家的反饋明顯看得出來。

要知道 Faster R-CNN已經(jīng)是2015年提出的論文了,而YOLOv3發(fā)表出來也已經(jīng)一年多了。最近目標(biāo)檢測相關(guān)的論文,比較典型的有:SNIPER、CornerNet、ExtremeNet、TridentNet、FSAF、FCOS、FoveaBox、兩個CenterNet 和 CornerNet-Lite等。

這么多目標(biāo)檢測算法,究竟哪家最強(qiáng)呢?!

性能最強(qiáng)的目標(biāo)檢測算法

這里羅列了幾個mAP很強(qiáng)很強(qiáng)的算法,并以時間線的角度來展示。

注意:各個網(wǎng)絡(luò)使用不同backbone,或加不同的tricks,都會有不同的 mAP。所以小編只介紹所能查到最強(qiáng)的算法或者最強(qiáng)組合算法。

SNIPER: Efficient Multi-Scale Training

mAP:47.6

Date:2018.05.23

arXiv:https://arxiv.org/abs/1805.09300

https://github.com/MahyarNajibi/SNIPER/

TridentNet:Scale-Aware Trident Networks for Object Detection

mAP:48.4

Date:2019.01.07 (已開源)

arXiv:https://arxiv.org/abs/1901.01892

https://github.com/TuSimple/simpledet

HTC + DCN + ResNeXt-101-FPN

mAP:50.7

Date:2019.01.22 (已開源)

arXiv:https://arxiv.org/abs/1901.07518

https://github.com/open-mmlab/mmdetection

NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection

mAP:48.3

Date:2019.04.16 (未開源)

arXiv:https://arxiv.org/abs/1904.07392

CornerNet-Saccade+gt attention

mAP:50.3

Date:2019.04.18 (已開源)

arXiv:https://arxiv.org/abs/1904.08900

https://github.com/princeton-vl/CornerNet-Lite

Cascade R-CNN:High Quality Object Detection and Instance Segmentation

mAP:50.9

Date:2019.06.24 (已開源)

arXiv:https://arxiv.org/abs/1906.09756

Caffe:https://github.com/zhaoweicai/cascade-rcnn

PyTorch:https://github.com/zhaoweicai/Detectron-Cascade-RCNN

Learning Data Augmentation Strategies for Object Detection

mAP:50.7

Date:2019.06.26 (已開源)

arXiv:https://arxiv.org/abs/1906.11172

https://github.com/tensorflow/tpu/tree/master/models/official/detection

綜上所述,可知改進(jìn)后的 Cascade R-CNN 算法是目前(2019.07.07)目標(biāo)檢測方向性能最強(qiáng)的算法,其 mAP 為 50.9。

侃侃

這里將 mAP 作為目標(biāo)檢測最強(qiáng)的指標(biāo),確實有失偏頗,不夠嚴(yán)謹(jǐn),因為很多人將目標(biāo)檢測應(yīng)用在不同的任務(wù)上,其實要求的性能也有所不同。但請放心,小編后續(xù)會統(tǒng)計一波 FPS最快的目標(biāo)檢測算法 和 mAP-FPS Trade-off 最佳的算法。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • MAP
    MAP
    +關(guān)注

    關(guān)注

    0

    文章

    49

    瀏覽量

    15521
  • 檢測算法
    +關(guān)注

    關(guān)注

    0

    文章

    122

    瀏覽量

    25501
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1224

    瀏覽量

    25457

原文標(biāo)題:大盤點 | 性能最強(qiáng)的目標(biāo)檢測算法

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    基于FPGA的SSD目標(biāo)檢測算法設(shè)計

    隨著人工智能的發(fā)展,神經(jīng)網(wǎng)絡(luò)正被逐步應(yīng)用于智能安防、自動駕駛、醫(yī)療等各行各業(yè)。目標(biāo)識別作為人工智能的項重要應(yīng)用也擁有著巨大的前景,隨著深度學(xué)習(xí)的普及和框架的成熟,卷積神經(jīng)網(wǎng)絡(luò)模型的識別精度越來越高
    的頭像 發(fā)表于 07-10 11:12 ?896次閱讀
    基于FPGA的SSD<b class='flag-5'>目標(biāo)</b><b class='flag-5'>檢測算法</b>設(shè)計

    基于RK3576開發(fā)板的車輛檢測算法

    車輛檢測種基于深度學(xué)習(xí)的對人進(jìn)行檢測定位的目標(biāo)檢測,能廣泛的用于園區(qū)管理、交通分析等多種場景,是違停識別、堵車識別、車流統(tǒng)計等多種
    的頭像 發(fā)表于 05-08 17:34 ?914次閱讀
    基于RK3576開發(fā)板的車輛<b class='flag-5'>檢測算法</b>

    基于RK3576開發(fā)板的安全帽檢測算法

    安全帽佩戴檢測是工地、生產(chǎn)安全、安防的重中之重,但人為主觀檢測的方式時效性差且不能全程監(jiān)控。AI技術(shù)的日漸成熟催生了安全帽佩戴檢測方案,成為了監(jiān)督佩戴安全帽的利器。本安全帽檢測算法
    的頭像 發(fā)表于 05-08 16:59 ?1586次閱讀
    基于RK3576開發(fā)板的安全帽<b class='flag-5'>檢測算法</b>

    基于RK3576開發(fā)板的人員檢測算法

    展示了RK3576開發(fā)板的人員檢測算法例程及API說明
    的頭像 發(fā)表于 05-07 17:33 ?302次閱讀
    基于RK3576開發(fā)板的人員<b class='flag-5'>檢測算法</b>

    基于RV1126開發(fā)板的車輛檢測算法開發(fā)

    車輛檢測種基于深度學(xué)習(xí)的對人進(jìn)行檢測定位的目標(biāo)檢測,能廣泛的用于園區(qū)管理、交通分析等多種場景,是違停識別、堵車識別、車流統(tǒng)計等多種
    的頭像 發(fā)表于 04-14 16:00 ?300次閱讀
    基于RV1126開發(fā)板的車輛<b class='flag-5'>檢測算法</b>開發(fā)

    基于RV1126開發(fā)板的安全帽檢測算法開發(fā)

    安全帽佩戴檢測是工地、生產(chǎn)安全、安防的重中之重,但人為主觀檢測的方式時效性差且不能全程監(jiān)控。AI技術(shù)的日漸成熟催生了安全帽佩戴檢測方案,成為了監(jiān)督佩戴安全帽的利器。本安全帽檢測算法
    的頭像 發(fā)表于 04-14 15:10 ?291次閱讀
    基于RV1126開發(fā)板的安全帽<b class='flag-5'>檢測算法</b>開發(fā)

    基于RV1126開發(fā)板的人臉檢測算法開發(fā)

    在RV1126上開發(fā)人臉檢測算法組件
    的頭像 發(fā)表于 04-14 10:19 ?330次閱讀
    基于RV1126開發(fā)板的人臉<b class='flag-5'>檢測算法</b>開發(fā)

    軒轅智駕紅外目標(biāo)檢測算法在汽車領(lǐng)域的應(yīng)用

    在 AI 技術(shù)蓬勃發(fā)展的當(dāng)下,目標(biāo)檢測算法取得了重大突破,其中紅外目標(biāo)檢測算法更是在汽車行業(yè)掀起了波瀾壯闊的變革,從根本上重塑著汽車的安全性能、駕駛體驗與產(chǎn)業(yè)生態(tài)。
    的頭像 發(fā)表于 03-27 15:55 ?434次閱讀

    睿創(chuàng)微納推出新目標(biāo)檢測算法

    隨著AI技術(shù)的發(fā)展,目標(biāo)檢測算法也迎來重大突破。睿創(chuàng)微納作為熱成像領(lǐng)軍者,憑借深厚的技術(shù)積累與創(chuàng)新能力,結(jié)合AI技術(shù)推出新目標(biāo)檢測算法
    的頭像 發(fā)表于 03-20 13:49 ?441次閱讀

    “碰一下”支付背后的4G技術(shù)

    不知道你是否有留意,近期,在線下支付場景中,多了個支付寶“碰一下”支付的設(shè)備,只需要“解鎖手機(jī)—碰一下—確認(rèn)”即可完成支付,對比打開付款碼支付,步驟確實更加簡潔。
    的頭像 發(fā)表于 01-03 16:27 ?1931次閱讀

    采用華為云 Flexus 云服務(wù)器 X 實例部署 YOLOv3 算法完成目標(biāo)檢測

    、前言 1.1 開發(fā)需求 這篇文章講解:?采用華為云最新推出的 Flexus 云服務(wù)器 X 實例部署 YOLOv3 算法,完成圖像分析、目標(biāo)檢測。 隨著計算機(jī)視覺技術(shù)的飛速發(fā)展,深度
    的頭像 發(fā)表于 01-02 12:00 ?545次閱讀
    采用華為云 Flexus 云服務(wù)器 X 實例部署 YOLOv3 <b class='flag-5'>算法</b>完成<b class='flag-5'>目標(biāo)</b><b class='flag-5'>檢測</b>

    請問一下LDC1000和LDC1314的最高焊接溫度和焊接技巧和方法是什么啊?

    您好,請問一下LDC1000 和LDC1314的最高焊接溫度和焊接技巧和方法是什么???
    發(fā)表于 01-02 06:23

    AI模型部署邊緣設(shè)備的奇妙之旅:目標(biāo)檢測模型

    廣泛的應(yīng)用,然而,在移動端工業(yè)領(lǐng)域的實際應(yīng)用中,對目標(biāo)檢測算法提出了更為苛刻的要求:需要實現(xiàn)高速度、高精度、小體積、易部署等特性。為應(yīng)對這挑戰(zhàn),百度于2021年末發(fā)布了篇關(guān)于移動端
    發(fā)表于 12-19 14:33

    如何制定套優(yōu)質(zhì)的工業(yè)視覺檢測算法方案?

    很難與當(dāng)下主流的AI平臺工具配型,或者是通過單一算法模型進(jìn)行訓(xùn)練,通常情況,工業(yè)視覺檢測項目面臨著系列獨特的難點與挑戰(zhàn)。比如:算法實現(xiàn)難
    的頭像 發(fā)表于 11-14 01:05 ?2549次閱讀
    如何制定<b class='flag-5'>一</b>套優(yōu)質(zhì)的工業(yè)視覺<b class='flag-5'>檢測算法</b>方案?

    在樹莓派上部署YOLOv5進(jìn)行動物目標(biāo)檢測的完整流程

    目標(biāo)檢測在計算機(jī)視覺領(lǐng)域中具有重要意義。YOLOv5(You Only Look One-level)是目標(biāo)檢測算法中的種代表性方法,以其
    的頭像 發(fā)表于 11-11 10:38 ?3731次閱讀
    在樹莓派上部署YOLOv5進(jìn)行動物<b class='flag-5'>目標(biāo)</b><b class='flag-5'>檢測</b>的完整流程