一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

從人工智能的角度看垃圾分類

WpOh_rgznai100 ? 來源:lq ? 2019-07-13 07:45 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本月1日起,上海正式開始了“史上最嚴“垃圾分類的規(guī)定,扔錯垃圾最高可罰200元。全國其它46個城市也要陸續(xù)步入垃圾分類新時代。各種被垃圾分類逼瘋的段子在社交媒體上層出不窮。

其實從人工智能的角度看垃圾分類就是圖像處理中圖像分類任務的一種應用,而這在2012年以來的ImageNet圖像分類任務的評比中,SENet模型以top-5測試集回歸2.25%錯誤率的成績可謂是技壓群雄,堪稱目前最強的圖像分類器。

筆者剛剛還到SENet的創(chuàng)造者momenta公司的網(wǎng)站上看了一下,他們最新的方向已經(jīng)是3D物體識別和標定了,效果如下:

可以說他們提出的SENet進行垃圾圖像處理是完全沒問題的。

Senet簡介

Senet的是由momenta和牛津大學共同提出的一種基于擠壓(squeeze)和激勵(Excitation)的模型,每個模塊通過“擠壓”操作嵌入來自全局感受野的信息,并且通過“激勵”操作選擇性地誘導響應增強。我們可以看到歷年的ImageNet冠軍基本都是在使用加大模型數(shù)量和連接數(shù)量的方式來提高精度,而Senet在這種”大力出奇跡”的潮流下明顯是一股清流。其論文地址如下:http://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.pdf

其具體原理說明如下:

Sequeeze:對 C×H×W 進行 global average pooling,得到 1×1×C 大小的特征圖,這個特征圖可以理解為具有全局感受野。翻譯論文原文來說:將每個二維的特征通道變成一個實數(shù),這個實數(shù)某種程度上具有全局的感受野,并且輸出的維度和輸入的特征通道數(shù)相匹配。它表征著在特征通道上響應的全局分布,而且使得靠近輸入的層也可以獲得全局的感受野。

Excitation :使用一個全連接神經(jīng)網(wǎng)絡,對 Sequeeze 之后的結(jié)果做一個非線性變換。它的機制一個類似于循環(huán)神經(jīng)網(wǎng)絡中的門。通過參數(shù) w 來為每個特征通道生成權重,其中參數(shù) w 被學習用來顯式地建模特征通道間的相關性。

特征重標定:使用 Excitation 得到的結(jié)果作為權重,乘到輸入特征上。將Excitation輸出的權重可以認為是特征通道的重要性反應,逐通道加權到放到先前的特征上,完成對原始特征的重標定。

其模型架構如下:

SENet 構造非常簡單,而且很容易被部署,不需要引入新的函數(shù)或者層。其caffe模型可以通過百度下載(https://pan.baidu.com/s/1o7HdfAE?errno=0&errmsg=Auth%20Login%20Sucess&&bduss=&ssnerror=0&traceid=)

Senet的運用

如果讀者布署有caffe那么直接下載剛剛的模型直接load進來就可以使用了。如果沒有裝caffe而裝了tensorflow也沒關系,我們剛剛說了SENet沒有引入新的函數(shù)和層,很方便用tensorflow實現(xiàn)。

下載圖像集:經(jīng)筆者各方查找發(fā)現(xiàn)了這個數(shù)據(jù)集,雖然不大也沒有發(fā)揮出SENet的優(yōu)勢,不過也方便使用:

https://raw.githubusercontent.com/garythung/trashnet/master/data/dataset-resized.zip

建立SENet模型:使用tensorflow建立的模型在github上也有開源項目了,網(wǎng)址如下:https://github.com/taki0112/SENet-Tensorflow,只是他使用的是Cifar10數(shù)據(jù)集,不過這也沒關系,只需要在gitclone以下將其cifar10.py中的prepare_data函數(shù)做如下修改即可。

1defprepare_data(): 2print("======Loadingdata======") 3download_data() 4data_dir='e:/test/' 5#data_dir='./cifar-10-batches-py'#改為你的文件俠 6image_dim=image_size*image_size*img_channels 7#meta=unpickle(data_dir+'/batches.meta')#本數(shù)據(jù)集不使用meta文件分類,故需要修改 8label_names=['cardboard','glass','metal','trash','paper','plastic'] 9label_count=len(label_names)10#train_files=['data_batch_%d'%dfordinrange(1,6)]11train_files=[data_dir+sforsinlabel_names]#改為12train_data,train_labels=load_data(train_files,data_dir,label_count)13test_data,test_labels=load_data(['test_batch'],data_dir,label_count)1415print("Traindata:",np.shape(train_data),np.shape(train_labels))16print("Testdata:",np.shape(test_data),np.shape(test_labels))17print("======Loadfinished======")1819print("======Shufflingdata======")20indices=np.random.permutation(len(train_data))21train_data=train_data[indices]22train_labels=train_labels[indices]23print("======PrepareFinished======")2425returntrain_data,train_labels,test_data,test_labels

其最主要的建模代碼如下,其主要工作就是將SENet的模型結(jié)構實現(xiàn)一下即可:

1importtensorflowastf 2fromtflearn.layers.convimportglobal_avg_pool 3fromtensorflow.contrib.layersimportbatch_norm,flatten 4fromtensorflow.contrib.frameworkimportarg_scope 5fromcifar10import* 6importnumpyasnp 7 8weight_decay=0.0005 9momentum=0.9 10 11init_learning_rate=0.1 12 13reduction_ratio=4 14 15batch_size=128 16iteration=391 17#128*391~50,000 18 19test_iteration=10 20 21total_epochs=100 22 23defconv_layer(input,filter,kernel,stride=1,padding='SAME',layer_name="conv",activation=True): 24withtf.name_scope(layer_name): 25network=tf.layers.conv2d(inputs=input,use_bias=True,filters=filter,kernel_size=kernel,strides=stride,padding=padding) 26ifactivation: 27network=Relu(network) 28returnnetwork 29 30defFully_connected(x,units=class_num,layer_name='fully_connected'): 31withtf.name_scope(layer_name): 32returntf.layers.dense(inputs=x,use_bias=True,units=units) 33 34defRelu(x): 35returntf.nn.relu(x) 36 37defSigmoid(x): 38returntf.nn.sigmoid(x) 39 40defGlobal_Average_Pooling(x): 41returnglobal_avg_pool(x,name='Global_avg_pooling') 42 43defMax_pooling(x,pool_size=[3,3],stride=2,padding='VALID'): 44returntf.layers.max_pooling2d(inputs=x,pool_size=pool_size,strides=stride,padding=padding) 45 46defBatch_Normalization(x,training,scope): 47witharg_scope([batch_norm], 48scope=scope, 49updates_collections=None, 50decay=0.9, 51center=True, 52scale=True, 53zero_debias_moving_mean=True): 54returntf.cond(training, 55lambda:batch_norm(inputs=x,is_training=training,reuse=None), 56lambda:batch_norm(inputs=x,is_training=training,reuse=True)) 57 58defConcatenation(layers): 59returntf.concat(layers,axis=3) 60 61defDropout(x,rate,training): 62returntf.layers.dropout(inputs=x,rate=rate,training=training) 63 64defEvaluate(sess): 65test_acc=0.0 66test_loss=0.0 67test_pre_index=0 68add=1000 69 70foritinrange(test_iteration): 71test_batch_x=test_x[test_pre_index:test_pre_index+add] 72test_batch_y=test_y[test_pre_index:test_pre_index+add] 73test_pre_index=test_pre_index+add 74 75test_feed_dict={ 76x:test_batch_x, 77label:test_batch_y, 78learning_rate:epoch_learning_rate, 79training_flag:False 80} 81 82loss_,acc_=sess.run([cost,accuracy],feed_dict=test_feed_dict) 83 84test_loss+=loss_ 85test_acc+=acc_ 86 87test_loss/=test_iteration#averageloss 88test_acc/=test_iteration#averageaccuracy 89 90summary=tf.Summary(value=[tf.Summary.Value(tag='test_loss',simple_value=test_loss), 91tf.Summary.Value(tag='test_accuracy',simple_value=test_acc)]) 92 93returntest_acc,test_loss,summary 94 95classSE_Inception_resnet_v2(): 96def__init__(self,x,training): 97self.training=training 98self.model=self.Build_SEnet(x) 99100defStem(self,x,scope):101withtf.name_scope(scope):102x=conv_layer(x,filter=32,kernel=[3,3],stride=2,padding='VALID',layer_name=scope+'_conv1')103x=conv_layer(x,filter=32,kernel=[3,3],padding='VALID',layer_name=scope+'_conv2')104block_1=conv_layer(x,filter=64,kernel=[3,3],layer_name=scope+'_conv3')105106split_max_x=Max_pooling(block_1)107split_conv_x=conv_layer(block_1,filter=96,kernel=[3,3],stride=2,padding='VALID',layer_name=scope+'_split_conv1')108x=Concatenation([split_max_x,split_conv_x])109110split_conv_x1=conv_layer(x,filter=64,kernel=[1,1],layer_name=scope+'_split_conv2')111split_conv_x1=conv_layer(split_conv_x1,filter=96,kernel=[3,3],padding='VALID',layer_name=scope+'_split_conv3')112113split_conv_x2=conv_layer(x,filter=64,kernel=[1,1],layer_name=scope+'_split_conv4')114split_conv_x2=conv_layer(split_conv_x2,filter=64,kernel=[7,1],layer_name=scope+'_split_conv5')115split_conv_x2=conv_layer(split_conv_x2,filter=64,kernel=[1,7],layer_name=scope+'_split_conv6')116split_conv_x2=conv_layer(split_conv_x2,filter=96,kernel=[3,3],padding='VALID',layer_name=scope+'_split_conv7')117118x=Concatenation([split_conv_x1,split_conv_x2])119120split_conv_x=conv_layer(x,filter=192,kernel=[3,3],stride=2,padding='VALID',layer_name=scope+'_split_conv8')121split_max_x=Max_pooling(x)122123x=Concatenation([split_conv_x,split_max_x])124125x=Batch_Normalization(x,training=self.training,scope=scope+'_batch1')126x=Relu(x)127128returnx129130defInception_resnet_A(self,x,scope):131withtf.name_scope(scope):132init=x133134split_conv_x1=conv_layer(x,filter=32,kernel=[1,1],layer_name=scope+'_split_conv1')135136split_conv_x2=conv_layer(x,filter=32,kernel=[1,1],layer_name=scope+'_split_conv2')137split_conv_x2=conv_layer(split_conv_x2,filter=32,kernel=[3,3],layer_name=scope+'_split_conv3')138139split_conv_x3=conv_layer(x,filter=32,kernel=[1,1],layer_name=scope+'_split_conv4')140split_conv_x3=conv_layer(split_conv_x3,filter=48,kernel=[3,3],layer_name=scope+'_split_conv5')141split_conv_x3=conv_layer(split_conv_x3,filter=64,kernel=[3,3],layer_name=scope+'_split_conv6')142143x=Concatenation([split_conv_x1,split_conv_x2,split_conv_x3])144x=conv_layer(x,filter=384,kernel=[1,1],layer_name=scope+'_final_conv1',activation=False)145146x=x*0.1147x=init+x148149x=Batch_Normalization(x,training=self.training,scope=scope+'_batch1')150x=Relu(x)151152returnx153154defInception_resnet_B(self,x,scope):155withtf.name_scope(scope):156init=x157158split_conv_x1=conv_layer(x,filter=192,kernel=[1,1],layer_name=scope+'_split_conv1')159160split_conv_x2=conv_layer(x,filter=128,kernel=[1,1],layer_name=scope+'_split_conv2')161split_conv_x2=conv_layer(split_conv_x2,filter=160,kernel=[1,7],layer_name=scope+'_split_conv3')162split_conv_x2=conv_layer(split_conv_x2,filter=192,kernel=[7,1],layer_name=scope+'_split_conv4')163164x=Concatenation([split_conv_x1,split_conv_x2])165x=conv_layer(x,filter=1152,kernel=[1,1],layer_name=scope+'_final_conv1',activation=False)166#1154167x=x*0.1168x=init+x169170x=Batch_Normalization(x,training=self.training,scope=scope+'_batch1')171x=Relu(x)172173returnx174175defInception_resnet_C(self,x,scope):176withtf.name_scope(scope):177init=x178179split_conv_x1=conv_layer(x,filter=192,kernel=[1,1],layer_name=scope+'_split_conv1')180181split_conv_x2=conv_layer(x,filter=192,kernel=[1,1],layer_name=scope+'_split_conv2')182split_conv_x2=conv_layer(split_conv_x2,filter=224,kernel=[1,3],layer_name=scope+'_split_conv3')183split_conv_x2=conv_layer(split_conv_x2,filter=256,kernel=[3,1],layer_name=scope+'_split_conv4')184185x=Concatenation([split_conv_x1,split_conv_x2])186x=conv_layer(x,filter=2144,kernel=[1,1],layer_name=scope+'_final_conv2',activation=False)187#2048188x=x*0.1189x=init+x190191x=Batch_Normalization(x,training=self.training,scope=scope+'_batch1')192x=Relu(x)193194returnx195196defReduction_A(self,x,scope):197withtf.name_scope(scope):198k=256199l=256200m=384201n=384202203split_max_x=Max_pooling(x)204205split_conv_x1=conv_layer(x,filter=n,kernel=[3,3],stride=2,padding='VALID',layer_name=scope+'_split_conv1')206207split_conv_x2=conv_layer(x,filter=k,kernel=[1,1],layer_name=scope+'_split_conv2')208split_conv_x2=conv_layer(split_conv_x2,filter=l,kernel=[3,3],layer_name=scope+'_split_conv3')209split_conv_x2=conv_layer(split_conv_x2,filter=m,kernel=[3,3],stride=2,padding='VALID',layer_name=scope+'_split_conv4')210211x=Concatenation([split_max_x,split_conv_x1,split_conv_x2])212213x=Batch_Normalization(x,training=self.training,scope=scope+'_batch1')214x=Relu(x)215216returnx217218defReduction_B(self,x,scope):219withtf.name_scope(scope):220split_max_x=Max_pooling(x)221222split_conv_x1=conv_layer(x,filter=256,kernel=[1,1],layer_name=scope+'_split_conv1')223split_conv_x1=conv_layer(split_conv_x1,filter=384,kernel=[3,3],stride=2,padding='VALID',layer_name=scope+'_split_conv2')224225split_conv_x2=conv_layer(x,filter=256,kernel=[1,1],layer_name=scope+'_split_conv3')226split_conv_x2=conv_layer(split_conv_x2,filter=288,kernel=[3,3],stride=2,padding='VALID',layer_name=scope+'_split_conv4')227228split_conv_x3=conv_layer(x,filter=256,kernel=[1,1],layer_name=scope+'_split_conv5')229split_conv_x3=conv_layer(split_conv_x3,filter=288,kernel=[3,3],layer_name=scope+'_split_conv6')230split_conv_x3=conv_layer(split_conv_x3,filter=320,kernel=[3,3],stride=2,padding='VALID',layer_name=scope+'_split_conv7')231232x=Concatenation([split_max_x,split_conv_x1,split_conv_x2,split_conv_x3])233234x=Batch_Normalization(x,training=self.training,scope=scope+'_batch1')235x=Relu(x)236237returnx238239defSqueeze_excitation_layer(self,input_x,out_dim,ratio,layer_name):240withtf.name_scope(layer_name):241242243squeeze=Global_Average_Pooling(input_x)244245excitation=Fully_connected(squeeze,units=out_dim/ratio,layer_name=layer_name+'_fully_connected1')246excitation=Relu(excitation)247excitation=Fully_connected(excitation,units=out_dim,layer_name=layer_name+'_fully_connected2')248excitation=Sigmoid(excitation)249250excitation=tf.reshape(excitation,[-1,1,1,out_dim])251scale=input_x*excitation252253returnscale254255defBuild_SEnet(self,input_x):256input_x=tf.pad(input_x,[[0,0],[32,32],[32,32],[0,0]])257#size32->96258print(np.shape(input_x))259#onlycifar10architecture260261x=self.Stem(input_x,scope='stem')262263foriinrange(5):264x=self.Inception_resnet_A(x,scope='Inception_A'+str(i))265channel=int(np.shape(x)[-1])266x=self.Squeeze_excitation_layer(x,out_dim=channel,ratio=reduction_ratio,layer_name='SE_A'+str(i))267268x=self.Reduction_A(x,scope='Reduction_A')269270channel=int(np.shape(x)[-1])271x=self.Squeeze_excitation_layer(x,out_dim=channel,ratio=reduction_ratio,layer_name='SE_A')272273foriinrange(10):274x=self.Inception_resnet_B(x,scope='Inception_B'+str(i))275channel=int(np.shape(x)[-1])276x=self.Squeeze_excitation_layer(x,out_dim=channel,ratio=reduction_ratio,layer_name='SE_B'+str(i))277278x=self.Reduction_B(x,scope='Reduction_B')279280channel=int(np.shape(x)[-1])281x=self.Squeeze_excitation_layer(x,out_dim=channel,ratio=reduction_ratio,layer_name='SE_B')282283foriinrange(5):284x=self.Inception_resnet_C(x,scope='Inception_C'+str(i))285channel=int(np.shape(x)[-1])286x=self.Squeeze_excitation_layer(x,out_dim=channel,ratio=reduction_ratio,layer_name='SE_C'+str(i))287288289#channel=int(np.shape(x)[-1])290#x=self.Squeeze_excitation_layer(x,out_dim=channel,ratio=reduction_ratio,layer_name='SE_C')291292x=Global_Average_Pooling(x)293x=Dropout(x,rate=0.2,training=self.training)294x=flatten(x)295296x=Fully_connected(x,layer_name='final_fully_connected')297returnx298299300train_x,train_y,test_x,test_y=prepare_data()301train_x,test_x=color_preprocessing(train_x,test_x)302303304#image_size=32,img_channels=3,class_num=10incifar10305x=tf.placeholder(tf.float32,shape=[None,image_size,image_size,img_channels])306label=tf.placeholder(tf.float32,shape=[None,class_num])307308training_flag=tf.placeholder(tf.bool)309310311learning_rate=tf.placeholder(tf.float32,name='learning_rate')312313logits=SE_Inception_resnet_v2(x,training=training_flag).model314cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=label,logits=logits))315316l2_loss=tf.add_n([tf.nn.l2_loss(var)forvarintf.trainable_variables()])317optimizer=tf.train.MomentumOptimizer(learning_rate=learning_rate,momentum=momentum,use_nesterov=True)318train=optimizer.minimize(cost+l2_loss*weight_decay)319320correct_prediction=tf.equal(tf.argmax(logits,1),tf.argmax(label,1))321accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))322323saver=tf.train.Saver(tf.global_variables())324325withtf.Session()assess:326ckpt=tf.train.get_checkpoint_state('./model')327ifckptandtf.train.checkpoint_exists(ckpt.model_checkpoint_path):328saver.restore(sess,ckpt.model_checkpoint_path)329else:330sess.run(tf.global_variables_initializer())331332summary_writer=tf.summary.FileWriter('./logs',sess.graph)333334epoch_learning_rate=init_learning_rate335forepochinrange(1,total_epochs+1):336ifepoch%30==0:337epoch_learning_rate=epoch_learning_rate/10338339pre_index=0340train_acc=0.0341train_loss=0.0342343forstepinrange(1,iteration+1):344ifpre_index+batch_size

其實使用SENet做垃圾分類真是大才小用了,不過大家也可以感受一下他的實力強大。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡

    關注

    42

    文章

    4814

    瀏覽量

    103635
  • 圖像處理
    +關注

    關注

    27

    文章

    1329

    瀏覽量

    58058
  • 人工智能
    +關注

    關注

    1807

    文章

    49029

    瀏覽量

    249562

原文標題:還在糾結(jié)垃圾分類問題?帶你用Python感受ImageNet冠軍模型SENet的強大

文章出處:【微信號:rgznai100,微信公眾號:rgznai100】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    迅為RK3588開發(fā)板Linux安卓麒麟瑞芯微國產(chǎn)工業(yè)AI人工智能

    迅為RK3588開發(fā)板Linux安卓麒麟瑞芯微國產(chǎn)工業(yè)AI人工智能
    發(fā)表于 07-14 11:23

    最新人工智能硬件培訓AI 基礎入門學習課程參考2025版(大模型篇)

    人工智能大模型重塑教育與社會發(fā)展的當下,無論是探索未來職業(yè)方向,還是更新技術儲備,掌握大模型知識都已成為新時代的必修課。職場上輔助工作的智能助手,到課堂用于學術研究的智能工具,大模
    發(fā)表于 07-04 11:10

    嵌入式和人工智能究竟是什么關系?

    嵌入式和人工智能究竟是什么關系? 嵌入式系統(tǒng)是一種特殊的系統(tǒng),它通常被嵌入到其他設備或機器中,以實現(xiàn)特定功能。嵌入式系統(tǒng)具有非常強的適應性和靈活性,能夠根據(jù)用戶需求進行定制化設計。它廣泛應用于各種
    發(fā)表于 11-14 16:39

    Vicor技術如何改進生成式人工智能的供電

    生成式人工智能(genAI)帶來的文化革命可能像互聯(lián)網(wǎng)普及一樣對人類產(chǎn)生深遠影響。您的角度來看,目前情況如何?
    的頭像 發(fā)表于 10-16 09:54 ?745次閱讀
    Vicor技術如何改進生成式<b class='flag-5'>人工智能</b>的供電

    《AI for Science:人工智能驅(qū)動科學創(chuàng)新》第6章人AI與能源科學讀后感

    幸得一好書,特此來分享。感謝平臺,感謝作者。受益匪淺。 在閱讀《AI for Science:人工智能驅(qū)動科學創(chuàng)新》的第6章后,我深刻感受到人工智能在能源科學領域中的巨大潛力和廣泛應用。這一章詳細
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動科學創(chuàng)新》第4章-AI與生命科學讀后感

    研究的進程。蛋白質(zhì)結(jié)構預測到基因測序與編輯,再到藥物研發(fā),人工智能技術在生命科學的各個層面都發(fā)揮著重要作用。特別是像AlphaFold這樣的工具,成功解決了困擾生物學界半個多世紀的蛋白質(zhì)折疊問題,將
    發(fā)表于 10-14 09:21

    《AI for Science:人工智能驅(qū)動科學創(chuàng)新》第一章人工智能驅(qū)動的科學創(chuàng)新學習心得

    。 5. 展望未來 最后,第一章讓我對人工智能驅(qū)動的科學創(chuàng)新未來充滿了期待。隨著技術的不斷進步和應用場景的拓展,AI將在更多領域發(fā)揮關鍵作用,基礎科學到應用科學,理論研究到實踐應用,都將迎來前所未有
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應用前景分析

    RISC-V在人工智能圖像處理領域的應用前景十分廣闊,這主要得益于其開源性、靈活性和低功耗等特點。以下是對RISC-V在人工智能圖像處理應用前景的詳細分析: 一、RISC-V的基本特點 RISC-V
    發(fā)表于 09-28 11:00

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析 想問下哪些比較容易學 不過好像都是要學的
    發(fā)表于 09-26 15:24

    人工智能ai4s試讀申請

    目前人工智能在繪畫對話等大模型領域應用廣闊,ai4s也是方興未艾。但是如何有效利用ai4s工具助力科研是個需要研究的課題,本書對ai4s基本原理和原則,方法進行描訴,有利于總結(jié)經(jīng)驗,擬按照要求準備相關體會材料。能否有助于入門和提高ss
    發(fā)表于 09-09 15:36

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅(qū)動科學創(chuàng)新

    大力發(fā)展AI for Science的原因。 第2章科學研究底層的理論模式與主要困境,以及人工智能三要素(數(shù)據(jù)、算法、算力)出發(fā),對AI for Science的技術支撐進行解讀。 第3章介紹了在
    發(fā)表于 09-09 13:54

    報名開啟!深圳(國際)通用人工智能大會將啟幕,國內(nèi)外大咖齊聚話AI

    8月28日至30日,2024深圳(國際)通用人工智能大會暨深圳(國際)通用人工智能產(chǎn)業(yè)博覽會將在深圳國際會展中心(寶安)舉辦。大會以“魅力AI·無限未來”為主題,致力于打造全球通用人工智能領域集產(chǎn)品
    發(fā)表于 08-22 15:00

    基于迅為RK3588【RKNPU2項目實戰(zhàn)1】:YOLOV5實時目標分類

    [/url] 【RKNPU2 人工智能開發(fā)】 【AI深度學習推理加速器】——RKNPU2 入門到實踐(基于RK3588和RK3568) 【RKNPU2項目實戰(zhàn)1】:YOLOV5實時目標分類 【RKNPU2項目實戰(zhàn)2】:SORT
    發(fā)表于 08-15 10:51

    亮鉆科技智能垃圾分類箱方案介紹

    據(jù)研究報告顯示,2020年智能垃圾分類市場規(guī)模約92億元。預計未來五年,隨著城市生活垃圾增多和政策推進,該行業(yè)將快速發(fā)展,到2025年市場規(guī)模預計達190億元。 在這種情況下,集成新一
    的頭像 發(fā)表于 08-06 17:46 ?1078次閱讀
    亮鉆科技<b class='flag-5'>智能</b><b class='flag-5'>垃圾</b><b class='flag-5'>分類</b>箱方案介紹

    FPGA在人工智能中的應用有哪些?

    FPGA(現(xiàn)場可編程門陣列)在人工智能領域的應用非常廣泛,主要體現(xiàn)在以下幾個方面: 一、深度學習加速 訓練和推理過程加速:FPGA可以用來加速深度學習的訓練和推理過程。由于其高并行性和低延遲特性
    發(fā)表于 07-29 17:05