一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

快速學(xué)習(xí)Spark和Hadoop的架構(gòu)的方法

IT家園 ? 2019-07-18 09:42 ? 次閱讀

Spark和Hadoop的架構(gòu)區(qū)別是什么,什么是spark,什么是Hadoop,怎么樣學(xué)習(xí)這些知識(shí)點(diǎn)?

總的來(lái)說(shuō),Spark采用更先進(jìn)的架構(gòu),使得靈活性、易用性、性能等方面都比Hadoop更有優(yōu)勢(shì),有取代Hadoop的趨勢(shì),但其穩(wěn)定性有待進(jìn)一步提高。我總結(jié),具體表現(xiàn)在如下幾個(gè)方面。

Spark和Hadoop的架構(gòu)有什么不同之處

Q:Spark和Hadoop的架構(gòu)區(qū)別

A:

Hadoop:MapRedcue由Map和Reduce兩個(gè)階段,并通過(guò)shuffle將兩個(gè)階段連接起來(lái)的。但是套用MapReduce模型解決問(wèn)題,不得不將問(wèn)題分解為若干個(gè)有依賴關(guān)系的子問(wèn)題,每個(gè)子問(wèn)題對(duì)應(yīng)一個(gè)MapReduce作業(yè),最終所有這些作業(yè)形成一個(gè)DAG。

Spark:是通用的DAG框架,可以將多個(gè)有依賴關(guān)系的作業(yè)轉(zhuǎn)換為一個(gè)大的DAG。核心思想是將Map和Reduce兩個(gè)操作進(jìn)一步拆分為多個(gè)元操作,這些元操作可以靈活組合,產(chǎn)生新的操作,并經(jīng)過(guò)一些控制程序組裝后形成一個(gè)大的DAG作業(yè)。

Q:Spark和Hadoop的中間計(jì)算結(jié)果處理區(qū)別

A:

Hadoop:在DAG中,由于有多個(gè)MapReduce作業(yè)組成,每個(gè)作業(yè)都會(huì)從HDFS上讀取一次數(shù)據(jù)和寫(xiě)一次數(shù)據(jù)(默認(rèn)寫(xiě)三份),即使這些MapReduce作業(yè)產(chǎn)生的數(shù)據(jù)是中間數(shù)據(jù)也需要寫(xiě)HDFS。這種表達(dá)作業(yè)依賴關(guān)系的方式比較低效,會(huì)浪費(fèi)大量不必要的磁盤和網(wǎng)絡(luò)IO,根本原因是作業(yè)之間產(chǎn)生的數(shù)據(jù)不是直接流動(dòng)的,而是借助HDFS作為共享數(shù)據(jù)存儲(chǔ)系統(tǒng)。

Spark:在Spark中,使用內(nèi)存(內(nèi)存不夠使用本地磁盤)替代了使用HDFS存儲(chǔ)中間結(jié)果。對(duì)于迭代運(yùn)算效率更高。

Q:Spark和Hadoop的操作模型區(qū)別

A:

Hadoop:只提供了Map和Reduce兩種操作所有的作業(yè)都得轉(zhuǎn)換成Map和Reduce的操作。

Spark:提供很多種的數(shù)據(jù)集操作類型比如Transformations 包括map, filter, flatMap, sample, groupByKey, reduceByKey, union, join, cogroup, mapValues,sort,partionBy等多種操作類型,還提供actions操作包括Count,collect, reduce, lookup, save等多種。這些多種多樣的數(shù)據(jù)集操作類型,給開(kāi)發(fā)上層應(yīng)用的用戶提供了方便。

Q:spark中的RDD是什么,有哪些特性?

A:

A list of partitions:一個(gè)分區(qū)列表,RDD中的數(shù)據(jù)都存儲(chǔ)在一個(gè)分區(qū)列表中

A function for computing each split:作用在每一個(gè)分區(qū)中的函數(shù)

A list of dependencies on other RDDs:一個(gè)RDD依賴于其他多個(gè)RDD,這個(gè)點(diǎn)很重要,RDD的容錯(cuò)機(jī)制就是依據(jù)這個(gè)特性而來(lái)的

Optionally,a Partitioner for key-value RDDs(eg:to say that the RDD is hash-partitioned):可選的,針對(duì)于kv類型的RDD才有這個(gè)特性,作用是決定了數(shù)據(jù)的來(lái)源以及數(shù)據(jù)處理后的去向

可選項(xiàng),數(shù)據(jù)本地性,數(shù)據(jù)位置最優(yōu)

Q:概述一下spark中的常用算子區(qū)別(map,mapPartitions,foreach,foreachPatition)

A:map:用于遍歷RDD,將函數(shù)應(yīng)用于每一個(gè)元素,返回新的RDD(transformation算子)

foreach:用于遍歷RDD,將函數(shù)應(yīng)用于每一個(gè)元素,無(wú)返回值(action算子)

mapPatitions:用于遍歷操作RDD中的每一個(gè)分區(qū),返回生成一個(gè)新的RDD(transformation算子)

foreachPatition:用于遍歷操作RDD中的每一個(gè)分區(qū),無(wú)返回值(action算子)

總結(jié):一般使用mapPatitions和foreachPatition算子比map和foreach更加高效,推薦使用。如果你想要學(xué)好編程技能,請(qǐng)留意內(nèi)蒙達(dá)內(nèi)官網(wǎng),學(xué)習(xí)技能快,我們只選對(duì)的機(jī)構(gòu)!



聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • Hadoop
    +關(guān)注

    關(guān)注

    1

    文章

    90

    瀏覽量

    16286
  • SPARK
    +關(guān)注

    關(guān)注

    1

    文章

    105

    瀏覽量

    20318
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    常見(jiàn)的PFC拓?fù)?b class='flag-5'>架構(gòu)及控制方法

    本期,芯朋微技術(shù)團(tuán)隊(duì)將為各位fans分享常見(jiàn)的PFC拓?fù)?b class='flag-5'>架構(gòu)及控制方法,為設(shè)計(jì)選型提供參考。
    的頭像 發(fā)表于 04-27 18:03 ?738次閱讀
    常見(jiàn)的PFC拓?fù)?b class='flag-5'>架構(gòu)</b>及控制<b class='flag-5'>方法</b>

    NVIDIA加速的Apache Spark助力企業(yè)節(jié)省大量成本

    隨著 NVIDIA 推出 Aether 項(xiàng)目,通過(guò)采用 NVIDIA 加速的 Apache Spark 企業(yè)得以自動(dòng)加速其數(shù)據(jù)中心規(guī)模的分析工作負(fù)載,從而節(jié)省數(shù)百萬(wàn)美元。
    的頭像 發(fā)表于 03-25 15:09 ?372次閱讀
    NVIDIA加速的Apache <b class='flag-5'>Spark</b>助力企業(yè)節(jié)省大量成本

    如何快速學(xué)習(xí)硬件電路

    對(duì)于想要學(xué)習(xí)硬件電路的新手來(lái)說(shuō),一開(kāi)始可能感到有些困難,但只要掌握了正確的學(xué)習(xí)方法和技巧,就能夠快速地成為一名優(yōu)秀的硬件電路工程師。 首先,新手需要了解基本的電路知識(shí),例如電阻、電容、電感等。這些
    的頭像 發(fā)表于 01-20 11:11 ?715次閱讀
    如何<b class='flag-5'>快速</b><b class='flag-5'>學(xué)習(xí)</b>硬件電路

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所以得名,是因?yàn)?/div>
    的頭像 發(fā)表于 01-09 10:24 ?845次閱讀
    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)<b class='flag-5'>架構(gòu)</b><b class='flag-5'>方法</b>

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開(kāi)發(fā)生物學(xué)數(shù)據(jù)的機(jī)器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個(gè)強(qiáng)大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與深度學(xué)習(xí)相比,傳統(tǒng)方法在給定問(wèn)題上的開(kāi)發(fā)和測(cè)試速度更快。
    的頭像 發(fā)表于 12-30 09:16 ?894次閱讀
    傳統(tǒng)機(jī)器<b class='flag-5'>學(xué)習(xí)方法</b>和應(yīng)用指導(dǎo)

    Pytorch深度學(xué)習(xí)訓(xùn)練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學(xué)習(xí)訓(xùn)練。
    的頭像 發(fā)表于 10-28 14:05 ?495次閱讀
    Pytorch深度<b class='flag-5'>學(xué)習(xí)</b>訓(xùn)練的<b class='flag-5'>方法</b>

    如何學(xué)習(xí)ARM?

    學(xué)習(xí)者和專家進(jìn)行交流和討論。通過(guò)互動(dòng)可以獲得更多的學(xué)習(xí)資源、解決問(wèn)題的方法,還可以結(jié)識(shí)志同道合的朋友。 7.持續(xù)學(xué)習(xí)和實(shí)踐: 學(xué)習(xí) AR
    發(fā)表于 10-11 10:42

    基于Kepware的Hadoop大數(shù)據(jù)應(yīng)用構(gòu)建-提升數(shù)據(jù)價(jià)值利用效能

    背景 Hadoop是一個(gè)由Apache基金會(huì)所開(kāi)發(fā)的分布式系統(tǒng)基礎(chǔ)架構(gòu),它允許用戶在不需要深入了解分布式底層細(xì)節(jié)的情況下,開(kāi)發(fā)分布式程序。Hadoop充分利用集群的威力進(jìn)行高速運(yùn)算和存儲(chǔ),特別適用于
    的頭像 發(fā)表于 10-08 15:12 ?278次閱讀
    基于Kepware的<b class='flag-5'>Hadoop</b>大數(shù)據(jù)應(yīng)用構(gòu)建-提升數(shù)據(jù)價(jià)值利用效能

    spark為什么比mapreduce快?

    spark為什么比mapreduce快? 首先澄清幾個(gè)誤區(qū): 1:兩者都是基于內(nèi)存計(jì)算的,任何計(jì)算框架都肯定是基于內(nèi)存的,所以網(wǎng)上說(shuō)的spark是基于內(nèi)存計(jì)算所以快,顯然是錯(cuò)誤的 2;DAG計(jì)算模型
    的頭像 發(fā)表于 09-06 09:45 ?422次閱讀

    機(jī)器學(xué)習(xí)中的數(shù)據(jù)分割方法

    在機(jī)器學(xué)習(xí)中,數(shù)據(jù)分割是一項(xiàng)至關(guān)重要的任務(wù),它直接影響到模型的訓(xùn)練效果、泛化能力以及最終的性能評(píng)估。本文將從多個(gè)方面詳細(xì)探討機(jī)器學(xué)習(xí)中數(shù)據(jù)分割的方法,包括常見(jiàn)的分割方法、各自的優(yōu)缺點(diǎn)、
    的頭像 發(fā)表于 07-10 16:10 ?2770次閱讀

    深度學(xué)習(xí)中的時(shí)間序列分類方法

    的發(fā)展,基于深度學(xué)習(xí)的TSC方法逐漸展現(xiàn)出其強(qiáng)大的自動(dòng)特征提取和分類能力。本文將從多個(gè)角度對(duì)深度學(xué)習(xí)在時(shí)間序列分類中的應(yīng)用進(jìn)行綜述,探討常用的深度學(xué)習(xí)模型及其改進(jìn)
    的頭像 發(fā)表于 07-09 15:54 ?1740次閱讀

    深度學(xué)習(xí)中的無(wú)監(jiān)督學(xué)習(xí)方法綜述

    應(yīng)用中往往難以實(shí)現(xiàn)。因此,無(wú)監(jiān)督學(xué)習(xí)在深度學(xué)習(xí)中扮演著越來(lái)越重要的角色。本文旨在綜述深度學(xué)習(xí)中的無(wú)監(jiān)督學(xué)習(xí)方法,包括自編碼器、生成對(duì)抗網(wǎng)絡(luò)、聚類算法等,并分析它們的原理、應(yīng)用場(chǎng)景以及優(yōu)
    的頭像 發(fā)表于 07-09 10:50 ?1371次閱讀

    spark運(yùn)行的基本流程

    前言: 由于最近對(duì)spark的運(yùn)行流程非常感興趣,所以閱讀了《Spark大數(shù)據(jù)處理:技術(shù)、應(yīng)用與性能優(yōu)化》一書(shū)。通過(guò)這本書(shū)的學(xué)習(xí),了解了spark的核心技術(shù)、實(shí)際應(yīng)用場(chǎng)景以及性能優(yōu)化的
    的頭像 發(fā)表于 07-02 10:31 ?606次閱讀
    <b class='flag-5'>spark</b>運(yùn)行的基本流程

    Spark基于DPU的Native引擎算子卸載方案

    Spark Streaming)、機(jī)器學(xué)習(xí)Spark MLlib)和圖計(jì)算(GraphX)。Spark?使用內(nèi)存加載保存數(shù)據(jù)并進(jìn)行迭代計(jì)算,減少磁盤溢寫(xiě),同時(shí)支持 Java、Sca
    的頭像 發(fā)表于 06-28 17:12 ?918次閱讀
    <b class='flag-5'>Spark</b>基于DPU的Native引擎算子卸載方案

    淺談存內(nèi)計(jì)算生態(tài)環(huán)境搭建以及軟件開(kāi)發(fā)

    )適配到存內(nèi)計(jì)算架構(gòu)中。 (二)研究現(xiàn)狀 隨著存內(nèi)計(jì)算硬件的發(fā)展,軟件開(kāi)發(fā)社區(qū)正在尋找方法將這種新技術(shù)集成到傳統(tǒng)的軟件開(kāi)發(fā)工作流程中。例如,流行的開(kāi)源框架Apache Spark已經(jīng)開(kāi)始探索如何利用存
    發(fā)表于 05-16 16:40