--- 產(chǎn)品詳情 ---
Number of channels (#) | 1 |
Total supply voltage (Max) (+5V=5, +/-5V=10) | 16 |
Total supply voltage (Min) (+5V=5, +/-5V=10) | 4.6 |
Vos (offset voltage @ 25 C) (Max) (mV) | 0.01 |
GBW (Typ) (MHz) | 1.9 |
Features | Zero Drift |
Slew rate (Typ) (V/us) | 2.8 |
Rail-to-rail | In to V-, Out |
Offset drift (Typ) (uV/C) | 0.01 |
Iq per channel (Typ) (mA) | 1.5 |
Vn at 1 kHz (Typ) (nV/rtHz) | 23 |
CMRR (Typ) (dB) | 125 |
Rating | Military |
Operating temperature range (C) | -55 to 125 |
Input bias current (Max) (pA) | 60 |
Output current (Typ) (mA) | 3 |
Architecture | CMOS |
- Input Noise Voltage
0.5 uV (Peak-to-Peak) Typ, f = 0 to 1 Hz
1.5 uV (Peak-to-Peak) Typ, f = 0 to 10 Hz
47 nV/Hz\ Typ, f = 10 Hz
13 nV/Hz\ Typ, f = 1 kHz
- High Chopping Frequency...10 kHz Typ
- No Clock Noise Below 10 kHz
- No Intermodulation Error Below 5 kHz
- Low Input Offset Voltage
10 uV Max (TLC2654A) - Excellent Offset Voltage Stability With Temperature...0.05 uV/°C Max
- AVD...135 dB Min (TLC2654A)
- CMRR...110 dB Min (TLC2654A)
- kSVR...110 dB Min
- Single-Supply Operation
- Common-Mode Input Voltage Range Includes the Negative Rail
- No Noise Degradation With External Capacitors Connected to VDD-
- Available in Q-Temp Automotive
HighRel Automotive Applications
Configuration Control/Print Support
Qualification to Automotive Standards
Advanced LinCMOS is a trademark of Texas Instruments.
The TLC2654 and TLC2654A are low-noise chopper-stabilized operational amplifiers using the Advanced LinCMOSTM process. Combining this process with chopper-stabilization circuitry makes excellent dc precision possible. In addition, circuit techniques are added that give the TLC2654 and TLC2654A superior noise performance.
Chopper-stabilization techniques provide for extremely high dc precision by continuously nulling input offset voltage even during variations in temperature, time, common-mode voltage, and power-supply voltage. The high chopping frequency of the TLC2654 and TLC2654A (see Figure 1) provides excellent noise performance in a frequency spectrum from near dc to 10 kHz. In addition, intermodulation or aliasing error is eliminated from frequencies up to 5 kHz.
This high dc precision and low noise, coupled with the extremely high input impedance of the CMOS input stage, makes the TLC2654 and TLC2654A ideal choices for a broad range of applications such as low-level, low-frequency thermocouple amplifiers and strain gauges and wide-bandwidth and subsonic circuits. For applications requiring even greater dc precision, use the TLC2652 or TLC2652A devices, which have a chopping frequency of 450 Hz.
The TLC2654 and TLC2654A common-mode input voltage range includes the negative rail, thereby providing superior performance in either single-supply or split-supply applications, even at power supply voltage levels as low as ±2.3 V.
Two external capacitors are required to operate the device; however, the on-chip chopper-control circuitry is transparent to the user. On devices in the 14-pin and 20-pin packages, the control circuitry is accessible, allowing the user the option of controlling the clock frequency with an external frequency source. In addition, the clock threshold of the TLC2554 and TLC2654A requires no level shifting when used in the single-supply configuration with a normal CMOS or TTL clock input.
Innovative circuit techniques used on the TLC2654 and TLC2654A allow exceptionally fast overload recovery time. An output clamp pin is available to reduce the recovery time even further.
The device inputs and outputs are designed to withstand -100-mA surge currents without
sustaining latch-up. In addition, the TLC2654 and TLC2654A incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015; however, exercise care in handling these devices, as exposure to ESD may result in degradation of the device parametric performance.
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The Q-suffix devices are characterized for operation from -40°C to 125°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to125°C.
為你推薦
-
TI數(shù)字多路復(fù)用器和編碼器SN54HC1512022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN54LS1532022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器CD54HC1472022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器CY74FCT2257T2022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN74LVC257A2022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN74LVC157A2022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN74ALS258A2022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN74ALS257A2022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN74ALS157A2022-12-23 15:12
-
TI數(shù)字多路復(fù)用器和編碼器SN74AHCT1582022-12-23 15:12
-
【PCB設(shè)計必備】31條布線技巧2023-08-03 08:09
相信大家在做PCB設(shè)計時,都會發(fā)現(xiàn)布線這個環(huán)節(jié)必不可少,而且布線的合理性,也決定了PCB的美觀度和其生產(chǎn)成本的高低,同時還能體現(xiàn)出電路性能和散熱性能的好壞,以及是否可以讓器件的性能達到最優(yōu)等。在上篇內(nèi)容中,小編主要分享了PCB線寬線距的一些設(shè)計規(guī)則,那么本篇內(nèi)容,將針對PCB的布線方式,做個全面的總結(jié)給到大家,希望能夠?qū)︷B(yǎng)成良好的設(shè)計習慣有所幫助。1走線長度1676瀏覽量 -
電動汽車直流快充方案設(shè)計【含參考設(shè)計】2023-08-03 08:08
-
Buck電路的原理及器件選型指南2023-07-31 22:28
-
100W USB PD 3.0電源2023-07-31 22:27
-
千萬不要忽略PCB設(shè)計中線寬線距的重要性2023-07-31 22:27
想要做好PCB設(shè)計,除了整體的布線布局外,線寬線距的規(guī)則也非常重要,因為線寬線距決定著電路板的性能和穩(wěn)定性。所以本篇以RK3588為例,詳細為大家介紹一下PCB線寬線距的通用設(shè)計規(guī)則。要注意的是,布線之前須把軟件默認設(shè)置選項設(shè)置好,并打開DRC檢測開關(guān)。布線建議打開5mil格點,等長時可根據(jù)情況設(shè)置1mil格點。PCB布線線寬01布線首先應(yīng)滿足工廠加工能力,1768瀏覽量 -
基于STM32的300W無刷直流電機驅(qū)動方案2023-07-06 10:02
-
上新啦!開發(fā)板僅需9.9元!2023-06-21 17:43
-
參考設(shè)計 | 2KW AC/DC數(shù)字電源方案2023-06-21 17:43
-
千萬不能小瞧的PCB半孔板2023-06-21 17:34