資料介紹
在過去,諧波分析儀不僅非常昂貴,而且難以集成到大規(guī)模制造的電表中。因此,對電網(wǎng)進(jìn)行諧波污染分析是一件非常困難的事情,只能偶爾由專業(yè)操作員在某些特定位置進(jìn)行。如今,芯片不僅可以集成更多的信號處理功能,而且尺寸更小、價格更低廉,能夠?qū)崿F(xiàn)對電網(wǎng)的高效使用和監(jiān)控。
過去幾十年來,電源系統(tǒng)呈指數(shù)式增長,其非線性特性引起了嚴(yán)重的諧波污染。這可能帶來多方面的不利影響,例如:電氣設(shè)備過熱和過早老化,傳輸線路損耗增加,以及繼電器保護(hù)失靈等。因此,業(yè)界越來越關(guān)注諧波污染問題,并采取了各項措施以實(shí)現(xiàn)更好的電網(wǎng)管理。其中,最佳的一個方法是在電網(wǎng)內(nèi)設(shè)置更多的觀測和分析點(diǎn),并且延長監(jiān)控時間。隨著智能電表在全世界范圍內(nèi)的加快部署,滿足上述要求的最佳器件會被用于其中。用于智能電表的ASIC集電能計量特性與諧波分析功能于一身,可能是最適合當(dāng)下的理想解決方案。請切記,考慮到一塊芯片內(nèi)要嵌入大量DSP資源,同時又必須廉價、尺寸小、功耗低,可想而知頻譜分析絕非易事。本文將討論一種嘗試滿足所有這些需求的DSP架構(gòu)解決方案。
基頻估算和頻譜成分提取
電網(wǎng)上不斷變化的負(fù)載與相對恒定的發(fā)電輸出之間存在一種動態(tài)的平衡關(guān)系,這導(dǎo)致在負(fù)載較高時,主電源頻率會略微降低,而在負(fù)載較低時,主電源頻率會略微提高。在電網(wǎng)高度發(fā)達(dá)并受到密切監(jiān)控的國家,頻率偏移量相當(dāng)小,但在電網(wǎng)控制不佳的地區(qū),頻率偏移量可能大到足以影響電氣設(shè)備。為此,業(yè)界已進(jìn)行大量研究工作,試圖找到通過優(yōu)化各種參數(shù),如精度、速度、噪聲和諧波抗擾度等,來實(shí)現(xiàn)跟蹤頻率的最有效方法。
就電源系統(tǒng)的安全性、穩(wěn)定性和效率而言,電網(wǎng)的頻率是與電流和電壓同等重要的工作參數(shù)??煽康念l率測量是有效的進(jìn)行電源控制、負(fù)載減輕、負(fù)載恢復(fù)和系統(tǒng)保護(hù)的先決條件。
檢測和估算頻率的方法有許多種。例如,過零方法通過測量兩個相繼過零點(diǎn)之間的時間間隔來檢測頻率,這種方法的優(yōu)點(diǎn)是非常容易實(shí)現(xiàn),缺點(diǎn)是精度較低,并且易受諧波、噪聲、直流成分等影響?;贒FT的算法可以利用采樣序列來估算頻率,但它對輸入信號中的諧波非常敏感。針對本文所述的DSP架構(gòu),我們考察了一種基于數(shù)字PLL的方法,發(fā)現(xiàn)它很有效,具有高抗擾度,同時還能提供精確的頻率估算。
圖1所示為標(biāo)準(zhǔn)數(shù)字PLL結(jié)構(gòu)及其三個主要模塊。相位誤差檢波器將輸出發(fā)送到環(huán)路濾波器,環(huán)路濾波器進(jìn)一步控制一個數(shù)字振蕩器,目的是最大程度地降低相位誤差。因此,最終可以獲得輸入信號基頻的估算值??刂骗h(huán)路經(jīng)過優(yōu)化,在45 Hz到66 Hz的標(biāo)準(zhǔn)電網(wǎng)頻率范圍內(nèi)可提供最佳的鎖定參數(shù)性能。

圖1. 基于數(shù)字PLL結(jié)構(gòu)的頻率估算
知道了要從頻譜中所提取成分的精確頻率后,我們就可以考察各種用于提取的選項。談到采樣系統(tǒng)的頻譜分析,我們自然會想到利用離散傅里葉變換(DFT)這個工具將信號從時域映射到頻域。有多種數(shù)值算法和處理架構(gòu)專門用于實(shí)現(xiàn)這種變換,F(xiàn)FT是其中最著名的一種。對比考慮提取的信息量和所需的DSP資源量,每種方法都有其優(yōu)點(diǎn)和缺點(diǎn)。
有一種交流電源系統(tǒng)理論使用復(fù)平面中的相量來代表電壓和電流,該理論與一種以類似格式提供頻譜成分的DFT變化形式相一致。從根本上說,在目標(biāo)頻率直接實(shí)現(xiàn)DFT公式也能達(dá)到同樣的效果。但是,為使測量具有實(shí)時性,我們采用了一種從DFT公式獲得求和元素的遞歸方法。實(shí)施方式有多種(取決于可用的DSP資源),但必須牢牢控制一個重要方面,這就是最大程度地降低頻譜泄漏和噪聲引起的誤差。
圖2以框圖形式說明了頻譜成分提取的工作原理。

圖2. 提取基波和諧波頻譜成分
某一相的采樣電壓和電流與基波頻率值一起通過一個計算模塊,該計算模塊以相量形式提供計算結(jié)果。針對每個基波頻率和某些用戶可選的諧波頻率,都會提供一對相量(電壓和電流)。有了這些分量之后,我們就可以運(yùn)用電源理論中的已知方法來提取RMS值和功率。RMS值相當(dāng)于這些相量的幅度,視在功率則等于這些幅度的乘積。將電流相量直接投影到電壓上并將二者相乘,就可以獲得有功功率。分解電流的另一個正交元素與電壓相乘就得到無功功率。
說到這里,我們要討論一下采用實(shí)時方法的可能優(yōu)點(diǎn)(動機(jī))。例如,這種架構(gòu)能夠很好地監(jiān)控變壓器中的浪涌電流。這種電流發(fā)生在變壓器通電期間,由磁芯的部分周期飽和引起。初始幅度為額定負(fù)載電流的2到5倍(然后慢慢降低),并具有極高的二次諧波,四次和五次諧波也會攜帶有用的信息。如果只看總RMS電流,浪涌電流可能會被誤認(rèn)為短路電流,因而可能錯誤地讓變壓器退出服務(wù)。為了識別這種情形,必須獲得二次諧波幅度的精確實(shí)時值。當(dāng)我們只需要幾個諧波的信息時,運(yùn)用完整的FFT變換可能不是非常有效。
這種有選擇地計算幾個諧波成分的方法可能比FFT方法更有效率,所謂三次諧波序列就是另一個很好的例子。有時需要特別注意三次諧波的奇數(shù)倍諧波(3、9、15、21.。.)。在接地Y型系統(tǒng)中,當(dāng)電流在零線上流動時,這些諧波就會成為一個重要問題。它會引起兩個典型問題:零線過載和電話干擾。有時候,零線的三次諧波序列壓降導(dǎo)致線路到零線電壓嚴(yán)重失真,致使某些設(shè)備發(fā)生故障。本文提出的解決方案可以只監(jiān)控零線電流以及所有相位電流之和上的這些諧波。
過去幾十年來,電源系統(tǒng)呈指數(shù)式增長,其非線性特性引起了嚴(yán)重的諧波污染。這可能帶來多方面的不利影響,例如:電氣設(shè)備過熱和過早老化,傳輸線路損耗增加,以及繼電器保護(hù)失靈等。因此,業(yè)界越來越關(guān)注諧波污染問題,并采取了各項措施以實(shí)現(xiàn)更好的電網(wǎng)管理。其中,最佳的一個方法是在電網(wǎng)內(nèi)設(shè)置更多的觀測和分析點(diǎn),并且延長監(jiān)控時間。隨著智能電表在全世界范圍內(nèi)的加快部署,滿足上述要求的最佳器件會被用于其中。用于智能電表的ASIC集電能計量特性與諧波分析功能于一身,可能是最適合當(dāng)下的理想解決方案。請切記,考慮到一塊芯片內(nèi)要嵌入大量DSP資源,同時又必須廉價、尺寸小、功耗低,可想而知頻譜分析絕非易事。本文將討論一種嘗試滿足所有這些需求的DSP架構(gòu)解決方案。
基頻估算和頻譜成分提取
電網(wǎng)上不斷變化的負(fù)載與相對恒定的發(fā)電輸出之間存在一種動態(tài)的平衡關(guān)系,這導(dǎo)致在負(fù)載較高時,主電源頻率會略微降低,而在負(fù)載較低時,主電源頻率會略微提高。在電網(wǎng)高度發(fā)達(dá)并受到密切監(jiān)控的國家,頻率偏移量相當(dāng)小,但在電網(wǎng)控制不佳的地區(qū),頻率偏移量可能大到足以影響電氣設(shè)備。為此,業(yè)界已進(jìn)行大量研究工作,試圖找到通過優(yōu)化各種參數(shù),如精度、速度、噪聲和諧波抗擾度等,來實(shí)現(xiàn)跟蹤頻率的最有效方法。
就電源系統(tǒng)的安全性、穩(wěn)定性和效率而言,電網(wǎng)的頻率是與電流和電壓同等重要的工作參數(shù)??煽康念l率測量是有效的進(jìn)行電源控制、負(fù)載減輕、負(fù)載恢復(fù)和系統(tǒng)保護(hù)的先決條件。
檢測和估算頻率的方法有許多種。例如,過零方法通過測量兩個相繼過零點(diǎn)之間的時間間隔來檢測頻率,這種方法的優(yōu)點(diǎn)是非常容易實(shí)現(xiàn),缺點(diǎn)是精度較低,并且易受諧波、噪聲、直流成分等影響?;贒FT的算法可以利用采樣序列來估算頻率,但它對輸入信號中的諧波非常敏感。針對本文所述的DSP架構(gòu),我們考察了一種基于數(shù)字PLL的方法,發(fā)現(xiàn)它很有效,具有高抗擾度,同時還能提供精確的頻率估算。
圖1所示為標(biāo)準(zhǔn)數(shù)字PLL結(jié)構(gòu)及其三個主要模塊。相位誤差檢波器將輸出發(fā)送到環(huán)路濾波器,環(huán)路濾波器進(jìn)一步控制一個數(shù)字振蕩器,目的是最大程度地降低相位誤差。因此,最終可以獲得輸入信號基頻的估算值??刂骗h(huán)路經(jīng)過優(yōu)化,在45 Hz到66 Hz的標(biāo)準(zhǔn)電網(wǎng)頻率范圍內(nèi)可提供最佳的鎖定參數(shù)性能。

圖1. 基于數(shù)字PLL結(jié)構(gòu)的頻率估算
知道了要從頻譜中所提取成分的精確頻率后,我們就可以考察各種用于提取的選項。談到采樣系統(tǒng)的頻譜分析,我們自然會想到利用離散傅里葉變換(DFT)這個工具將信號從時域映射到頻域。有多種數(shù)值算法和處理架構(gòu)專門用于實(shí)現(xiàn)這種變換,F(xiàn)FT是其中最著名的一種。對比考慮提取的信息量和所需的DSP資源量,每種方法都有其優(yōu)點(diǎn)和缺點(diǎn)。
有一種交流電源系統(tǒng)理論使用復(fù)平面中的相量來代表電壓和電流,該理論與一種以類似格式提供頻譜成分的DFT變化形式相一致。從根本上說,在目標(biāo)頻率直接實(shí)現(xiàn)DFT公式也能達(dá)到同樣的效果。但是,為使測量具有實(shí)時性,我們采用了一種從DFT公式獲得求和元素的遞歸方法。實(shí)施方式有多種(取決于可用的DSP資源),但必須牢牢控制一個重要方面,這就是最大程度地降低頻譜泄漏和噪聲引起的誤差。
圖2以框圖形式說明了頻譜成分提取的工作原理。

圖2. 提取基波和諧波頻譜成分
某一相的采樣電壓和電流與基波頻率值一起通過一個計算模塊,該計算模塊以相量形式提供計算結(jié)果。針對每個基波頻率和某些用戶可選的諧波頻率,都會提供一對相量(電壓和電流)。有了這些分量之后,我們就可以運(yùn)用電源理論中的已知方法來提取RMS值和功率。RMS值相當(dāng)于這些相量的幅度,視在功率則等于這些幅度的乘積。將電流相量直接投影到電壓上并將二者相乘,就可以獲得有功功率。分解電流的另一個正交元素與電壓相乘就得到無功功率。
說到這里,我們要討論一下采用實(shí)時方法的可能優(yōu)點(diǎn)(動機(jī))。例如,這種架構(gòu)能夠很好地監(jiān)控變壓器中的浪涌電流。這種電流發(fā)生在變壓器通電期間,由磁芯的部分周期飽和引起。初始幅度為額定負(fù)載電流的2到5倍(然后慢慢降低),并具有極高的二次諧波,四次和五次諧波也會攜帶有用的信息。如果只看總RMS電流,浪涌電流可能會被誤認(rèn)為短路電流,因而可能錯誤地讓變壓器退出服務(wù)。為了識別這種情形,必須獲得二次諧波幅度的精確實(shí)時值。當(dāng)我們只需要幾個諧波的信息時,運(yùn)用完整的FFT變換可能不是非常有效。
這種有選擇地計算幾個諧波成分的方法可能比FFT方法更有效率,所謂三次諧波序列就是另一個很好的例子。有時需要特別注意三次諧波的奇數(shù)倍諧波(3、9、15、21.。.)。在接地Y型系統(tǒng)中,當(dāng)電流在零線上流動時,這些諧波就會成為一個重要問題。它會引起兩個典型問題:零線過載和電話干擾。有時候,零線的三次諧波序列壓降導(dǎo)致線路到零線電壓嚴(yán)重失真,致使某些設(shè)備發(fā)生故障。本文提出的解決方案可以只監(jiān)控零線電流以及所有相位電流之和上的這些諧波。
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- 如何使用DSP實(shí)現(xiàn)方波信號的諧波分析 39次下載
- 使用LabVIEW進(jìn)行數(shù)據(jù)庫訪問技術(shù)在電網(wǎng)諧波分析系統(tǒng)中的資料說明 8次下載
- 如何使用DSP和CPLD進(jìn)行諧波檢測裝置的設(shè)計資料說明 6次下載
- 電網(wǎng)諧波電流小波變換實(shí)時檢測研究的資料分析 7次下載
- 基于概率預(yù)測與諧波潮流的配電網(wǎng)諧波源識別方法 1次下載
- 一種用于諧波分析的高精度多譜線插值算法 2次下載
- 基于ETAP的鋼鐵企業(yè)電網(wǎng)諧波分析 0次下載
- 嵌入式的電網(wǎng)諧波檢測 5次下載
- 電網(wǎng)諧波污染分析依靠什么來應(yīng)對? 2次下載
- 基于DSP的對電網(wǎng)高效使用和監(jiān)控的實(shí)現(xiàn) 51次下載
- 電網(wǎng)諧波的產(chǎn)生及檢測方法 131次下載
- 基于TMS320F2812的電網(wǎng)諧波監(jiān)測系統(tǒng)
- 電網(wǎng)綠色環(huán)保與諧波污染控制
- 存在諧波污染時的閃變評估
- 基于TMS320F2812的電網(wǎng)諧波監(jiān)測系統(tǒng)
- 變頻器諧波抑制技術(shù)及其影響分析 655次閱讀
- 諧波的產(chǎn)生、危害及措施 6217次閱讀
- 繞組磁勢諧波的影響因素與諧波抑制 1827次閱讀
- 自適應(yīng)實(shí)時DSP架構(gòu)用于監(jiān)測電網(wǎng)中的諧波成分和各種電能質(zhì)量因素 898次閱讀
- 諧波檢測儀的基本原理、測量方法及應(yīng)用 8141次閱讀
- EMC諧波電流測試流程 6491次閱讀
- 對微電網(wǎng)中并聯(lián)逆變器與電網(wǎng)的諧波交互問題進(jìn)行分析研究 1167次閱讀
- 滿足多種需求的DSP架構(gòu)解決方案 2316次閱讀
- 諧波電流對電氣設(shè)備干擾的形成 1928次閱讀
- 諧波到底怎么理解_諧波的定義 7.2w次閱讀
- 淺談電網(wǎng)諧波的危害 5222次閱讀
- 淺談電能質(zhì)量電網(wǎng)諧波 4226次閱讀
- 如何打倒諧波測量的“攔路虎” 2127次閱讀
- LED電源總諧波失真的分析、測量及預(yù)防 2.3w次閱讀
- 電網(wǎng)諧波在線監(jiān)測系統(tǒng)解決方案 1771次閱讀
下載排行
本周
- 1DC電源插座圖紙
- 0.67 MB | 2次下載 | 免費(fèi)
- 2AN158 GD32VW553 Wi-Fi開發(fā)指南
- 1.51MB | 2次下載 | 免費(fèi)
- 3AN148 GD32VW553射頻硬件開發(fā)指南
- 2.07MB | 1次下載 | 免費(fèi)
- 4AN111-LTC3219用戶指南
- 84.32KB | 次下載 | 免費(fèi)
- 5AN153-用于電源系統(tǒng)管理的Linduino
- 1.38MB | 次下載 | 免費(fèi)
- 6AN-283: Σ-Δ型ADC和DAC[中文版]
- 677.86KB | 次下載 | 免費(fèi)
- 7SM2018E 支持可控硅調(diào)光線性恒流控制芯片
- 402.24 KB | 次下載 | 免費(fèi)
- 8AN-1308: 電流檢測放大器共模階躍響應(yīng)
- 545.42KB | 次下載 | 免費(fèi)
本月
- 1ADI高性能電源管理解決方案
- 2.43 MB | 450次下載 | 免費(fèi)
- 2免費(fèi)開源CC3D飛控資料(電路圖&PCB源文件、BOM、
- 5.67 MB | 138次下載 | 1 積分
- 3基于STM32單片機(jī)智能手環(huán)心率計步器體溫顯示設(shè)計
- 0.10 MB | 130次下載 | 免費(fèi)
- 4使用單片機(jī)實(shí)現(xiàn)七人表決器的程序和仿真資料免費(fèi)下載
- 2.96 MB | 44次下載 | 免費(fèi)
- 53314A函數(shù)發(fā)生器維修手冊
- 16.30 MB | 31次下載 | 免費(fèi)
- 6美的電磁爐維修手冊大全
- 1.56 MB | 24次下載 | 5 積分
- 7如何正確測試電源的紋波
- 0.36 MB | 17次下載 | 免費(fèi)
- 8感應(yīng)筆電路圖
- 0.06 MB | 10次下載 | 免費(fèi)
總榜
- 1matlab軟件下載入口
- 未知 | 935121次下載 | 10 積分
- 2開源硬件-PMP21529.1-4 開關(guān)降壓/升壓雙向直流/直流轉(zhuǎn)換器 PCB layout 設(shè)計
- 1.48MB | 420062次下載 | 10 積分
- 3Altium DXP2002下載入口
- 未知 | 233088次下載 | 10 積分
- 4電路仿真軟件multisim 10.0免費(fèi)下載
- 340992 | 191367次下載 | 10 積分
- 5十天學(xué)會AVR單片機(jī)與C語言視頻教程 下載
- 158M | 183335次下載 | 10 積分
- 6labview8.5下載
- 未知 | 81581次下載 | 10 積分
- 7Keil工具M(jìn)DK-Arm免費(fèi)下載
- 0.02 MB | 73810次下載 | 10 積分
- 8LabVIEW 8.6下載
- 未知 | 65988次下載 | 10 積分
評論