完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>
標(biāo)簽 > 光譜
光譜(spectrum) :是復(fù)色光經(jīng)過色散系統(tǒng)(如棱鏡、光柵)分光后,被色散開的單色光按波長(或頻率)大小而依次排列的圖案,全稱為光學(xué)頻譜。
光譜(spectrum) :是復(fù)色光經(jīng)過色散系統(tǒng)(如棱鏡、光柵)分光后,被色散開的單色光按波長(或頻率)大小而依次排列的圖案,全稱為光學(xué)頻譜。光譜中最大的一部分可見光譜是電磁波譜中人眼可見的一部分,在這個波長范圍內(nèi)的電磁輻射被稱作可見光。光譜并沒有包含人類大腦視覺所能區(qū)別的所有顏色,譬如褐色和粉紅色。
光波是由原子運動過程中的電子產(chǎn)生的。各種物質(zhì)的原子內(nèi)部電子的運動情況不同,所以它們發(fā)射的光波也不同。研究不同物質(zhì)的發(fā)光和吸收光的情況,有重要的理論和實際意義,已成為一門專門的學(xué)科——光譜學(xué)。分子的紅外吸收光譜一般是研究分子的振動光譜與轉(zhuǎn)動光譜的,其中分子振動光譜一直是主要的研究課題。
光譜(spectrum) :是復(fù)色光經(jīng)過色散系統(tǒng)(如棱鏡、光柵)分光后,被色散開的單色光按波長(或頻率)大小而依次排列的圖案,全稱為光學(xué)頻譜。光譜中最大的一部分可見光譜是電磁波譜中人眼可見的一部分,在這個波長范圍內(nèi)的電磁輻射被稱作可見光。光譜并沒有包含人類大腦視覺所能區(qū)別的所有顏色,譬如褐色和粉紅色。
光波是由原子運動過程中的電子產(chǎn)生的。各種物質(zhì)的原子內(nèi)部電子的運動情況不同,所以它們發(fā)射的光波也不同。研究不同物質(zhì)的發(fā)光和吸收光的情況,有重要的理論和實際意義,已成為一門專門的學(xué)科——光譜學(xué)。分子的紅外吸收光譜一般是研究分子的振動光譜與轉(zhuǎn)動光譜的,其中分子振動光譜一直是主要的研究課題。
原理
復(fù)色光中有著各種波長(或頻率)的光,這些光在介質(zhì)中有著不同的折射率。因此,當(dāng)復(fù)色光通過具有一定幾何外形的介質(zhì)(如三棱鏡)之后,波長不同的光線會因出射角的不同而發(fā)生色散現(xiàn)象,投映出連續(xù)的或不連續(xù)的彩色光帶。這個原理亦被應(yīng)用于著名的太陽光的色散實驗。太陽光呈現(xiàn)白色,當(dāng)它通過三棱鏡折射后,將形成由紅、橙、黃、綠、藍、靛、紫順次連續(xù)分布的彩色光譜,覆蓋了大約在390到770納米的可見光區(qū)。歷史上,這一實驗由英國科學(xué)家艾薩克·牛頓爵士于1665年完成,使得人們第一次接觸到了光的客觀的和定量的特征。
光譜定性分析
光譜定性分析就是根據(jù)光譜圖中是否有某元素的特征譜線(一般是最后線)出現(xiàn)來判斷樣品中是否含有某種元素。定性分析方法常有以下兩種。(1)標(biāo)準(zhǔn)試樣光譜比較法將要檢出元素的純物質(zhì)或純化合物與試樣并列攝譜于同一感光板上,在映譜儀上檢查試樣光譜與純物質(zhì)光譜。若兩者譜線出現(xiàn)在同一波長位置上,即可說明某一元素的某條譜線存在。此法多用于不經(jīng)常遇到的元素或譜圖上沒有的元素分析。(2)鐵光譜比較法鐵光譜比較法是目前最通用的方法,它采用鐵的光譜作為波長的標(biāo)尺,來判斷其它元素的譜線。鐵光譜作標(biāo)尺有如下特點。①譜線多,在210~600nm范圍內(nèi)有幾千條譜線;②譜線間相距都很近,在上述波長范圍內(nèi)均勻分布,對每一條鐵譜線波長,人們都已進行了精確的測量。
激發(fā)光譜與發(fā)射光譜有什么區(qū)別?
1. 熒光的定義(fluorescence)。
對于熒光有這樣一些文字的定義和解釋:a. “熒光是物質(zhì)或分子發(fā)出的冷光(luminescence)”。所謂冷光,是指光并非由熱產(chǎn)生,可以是光致、電致、化學(xué)反應(yīng)所致等等(反正就不能是熱致)。b. “當(dāng)某種常溫物質(zhì)經(jīng)某種波長的入射光(通常是紫外線或X射線)照射,吸收光能后進入激發(fā)態(tài),立即退激發(fā)并發(fā)出比入射光波長長的出射光(通常波長在可見光波段);而且一旦停止入射光,發(fā)光現(xiàn)象也隨之立即消失。具有這種性質(zhì)的出射光就被稱之為熒光。”
這些文字的解釋都難以理解和形象化。其實對于熒光最好的解釋來自于對光子與物質(zhì)分子作用過程(分子的激發(fā)和馳豫)的理解。
2. 熒光從何而來 —— 分子的激發(fā)和馳豫 ?
圖 1
PS:圖1摘自Principles of fluorescence Spectroscopy, Joseph R. Lakowicz
圖1為一種Jablonski diagram(就簡單的理解為能級圖吧)。圖中S0,S1,S2分別表示分子中的電子基態(tài),第一、第二電子激發(fā)態(tài)。當(dāng)分子吸收光子,電子則可能從基態(tài)(S0)躍遷到激發(fā)態(tài)(S1,S2)。激發(fā)態(tài)電子不穩(wěn)定,會從激發(fā)態(tài)(S1,S2)回到基態(tài)(S0),并發(fā)出熒光(這就是熒光的源頭)。當(dāng)然并不一定要發(fā)出熒光,可以產(chǎn)生熱或者其他形式能量。如果電子從激發(fā)態(tài)(S1)通過系間竄越轉(zhuǎn)化為電子T1激發(fā)態(tài),然后再從激發(fā)態(tài)T1回到S0,則發(fā)出磷光。(磷光與熒光的根本區(qū)別在此)。至于S1激發(fā)態(tài)和T1激發(fā)態(tài)的區(qū)別主要在于電子自旋的方向(單線態(tài)和三線態(tài))。
分子吸收光后其中電子的激發(fā)和馳豫分別需要滿足兩大規(guī)律。激發(fā)過程滿足Franck – Condon規(guī)則;退激發(fā)滿足Kasha規(guī)則。Franck– Condon規(guī)則(圖2A)的大意為:電子的躍遷過程很快,這一過程中原子核的相對位置來不及發(fā)生變化,可以簡單理解為垂直躍遷。而Kasha規(guī)則(圖2B)規(guī)定在電子馳豫復(fù)合的過程中,首先電子要馳豫到電子激發(fā)態(tài)的最低能級,然后再回到基態(tài)。如圖2所示:
圖 2
PS:圖2摘自維基百科相關(guān)詞條
3. 如何解讀熒光光譜(穩(wěn)態(tài))
3a :熒光光譜分為:激發(fā)光譜(PLE)和發(fā)射光譜(PL)。
激發(fā)光譜:固定發(fā)射光的波長,改變激發(fā)光的波長,記錄熒光強度隨激發(fā)波長的變化。
發(fā)射光譜:固定激發(fā)光的波長,記錄不同發(fā)射波長處熒光強度隨發(fā)射波長的變化。
無論是激發(fā)還是發(fā)射熒光光譜圖,其都是記錄發(fā)射熒光強度隨波長的變化。所以熒光光譜中縱坐標(biāo)為強度,橫坐標(biāo)為波長。首先從圖中能獲取峰位和半峰寬。峰位的直觀體現(xiàn)是熒光的顏色;半峰寬則表示熒光的純度。
圖 3
PS:圖3摘自Nano Letters,2,1027
熒光光譜常與吸收光譜同時出現(xiàn)。所以可以與分子的吸收光譜相比較。圖3A為同一物質(zhì)的吸收光譜(UV - Vis)、熒光激發(fā)光譜(PLE)和熒光發(fā)射光譜圖(PL)。從圖中不難發(fā)現(xiàn)激發(fā)光譜與吸收光譜非常相似。但是兩者有著本質(zhì)的不同,吸收光譜的縱坐標(biāo)是吸光度(Absorbance),反應(yīng)物質(zhì)吸收光的情況;熒光光譜的縱坐標(biāo)是分子發(fā)出的熒光強度(Intensity),其不僅與物質(zhì)吸光能力有關(guān)還和量子效率有關(guān)。在很多研究體系中,常常結(jié)合兩者分析問題。
本文主要介紹了什么是白熾燈、白熾燈的分類和白熾燈的主要特性,其次介紹了白熾燈的光譜范圍,最后介紹了白熾燈的光譜圖。
太赫茲時域光譜技術(shù)原理分析_太赫茲時域光譜技術(shù)的應(yīng)用
本文主要介紹了太赫茲時域光譜技術(shù)原理分析_太赫茲時域光譜技術(shù)的應(yīng)用。THz-TDS系統(tǒng)是基于相干探測技術(shù)的太赫茲產(chǎn)生與探測系統(tǒng),能夠同時獲得太赫茲脈沖的...
紫光LED的機會:更接近太陽光譜,紫光LED在國內(nèi)會崛起嗎?
紫外芯片一般分為UVA、UVB、UVC,其中,UVA最多,UVC其次,UVB還很少很少。紫光LED生產(chǎn)難度大,不僅僅是半導(dǎo)體配方的問題,目前來說紫光輻射...
衍射光柵的另外一種用法是將其置于發(fā)散光束中,從狹縫入射的光不需要準(zhǔn)直系統(tǒng)直接入射到光柵上,經(jīng)光柵衍射后可得到目標(biāo)狹縫的光譜虛像,成像系統(tǒng)將狹縫按波長成像...
聚焦I四方光電激光光譜技術(shù)的十年布局,助推高端氣體分析儀器國產(chǎn)化提速
在第一臺激光器誕生60多年后的今天, 隨著激光光源、探測技術(shù)、實驗裝置和數(shù)據(jù)處理等各方面技術(shù)的飛躍發(fā)展, 激光光譜技術(shù)作為微觀感知領(lǐng)域的核心技術(shù), 已經(jīng)...
認(rèn)識LED光源光譜中的藍光,藍光對人的生理和節(jié)律影響
從目前的文獻看來,人眼對光譜的敏感度是不同的,如圖4.a就是在明視環(huán)境和暗視環(huán)境的光譜敏感函數(shù)的對比,本質(zhì)上,這兩者的對比就是視桿細(xì)胞和視錐細(xì)胞的光敏感...
基于米氏超構(gòu)表面的像素集成長波多光譜Ⅱ類超晶格探測器
多光譜探測是大氣監(jiān)測、廢棄物檢測、食品安全和微生物檢測等應(yīng)用技術(shù)中不可或缺的一部分。多光譜探測系統(tǒng)按照波長可以分為短波(1.1 μm~2 μm),中波(...
基于ADV212的光譜數(shù)據(jù)壓縮系統(tǒng)研究立即下載
類別:FPGA/ASIC 2011-08-15 標(biāo)簽:數(shù)據(jù)壓縮系統(tǒng)光譜ADV212
根據(jù)現(xiàn)代光譜儀器的工作原理,光譜儀可以分為兩大類:經(jīng)典光譜儀和新型光譜儀。經(jīng)典光譜儀器是建立在空間色散原理上的儀器;新型光譜儀器是建立在調(diào)制原理上的儀器...
三維熒光光譜(EEM)是將熒光強度以等高線方式投影在以激發(fā)光波長和發(fā)射光波長為縱橫坐標(biāo)的平面上獲得的譜圖,圖像直觀,所含信息豐富。
2020-03-22 標(biāo)簽:光譜 2.6萬 0
iPhone XS Max的屏幕素質(zhì)到底如何?了解顯示行業(yè)的都知道,要評價一個屏幕,要從色溫、色準(zhǔn)以及色域三個方面去評價。然而色溫是可以調(diào)節(jié)的,色準(zhǔn)也是...
三維熒光光譜則是由激發(fā)波長(y軸))一發(fā)射波長(x軸)一熒光強度(z軸)三維坐標(biāo)所表征的矩陣光譜(Excitation—Emission—Matrix ...
熒光光譜先要知道熒光,熒光是物質(zhì)吸收電磁輻射后受到激發(fā),受激發(fā)原子或分子在去激發(fā)過程中再發(fā)射波長與激發(fā)輻射波長相同或不同的輻射。當(dāng)激發(fā)光源停止輻照試樣以...
海譜納米首次實現(xiàn)基于MEMS技術(shù)的短波紅外高光譜相機的量產(chǎn)
深圳市海譜納米光學(xué)科技有限公司(以下簡稱:海譜納米)宣布取得重大技術(shù)突破,業(yè)內(nèi)首次實現(xiàn)了基于MEMS技術(shù)的短波紅外高光譜相機的量產(chǎn)。
受鳥類啟發(fā):多光譜相機在動態(tài)環(huán)境中檢測跟蹤更精準(zhǔn)
近年來,仿生視覺系統(tǒng)得到了大量研究與應(yīng)用,其動機是新穎的光學(xué)結(jié)構(gòu)和成像能力。昆蟲的眼睛是一個特別富有成果的來源,例如美國加州大學(xué)洛杉磯分校開發(fā)的模仿蒼蠅...
高光譜成像技術(shù)在各大領(lǐng)域的應(yīng)用
今天,小編將為大家?guī)淼闹R點是關(guān)于高光譜成像技術(shù)在各大領(lǐng)域的應(yīng)用,希望可以幫助到大家。
編輯推薦廠商產(chǎn)品技術(shù)軟件/工具OS/語言教程專題
電機控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無刷電機 | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機 | PID | MOSFET | 傳感器 | 人工智能 | 物聯(lián)網(wǎng) | NXP | 賽靈思 |
步進電機 | SPWM | 充電樁 | IPM | 機器視覺 | 無人機 | 三菱電機 | ST |
伺服電機 | SVPWM | 光伏發(fā)電 | UPS | AR | 智能電網(wǎng) | 國民技術(shù) | Microchip |
Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |