完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>
標簽 > 太陽能電池
太陽能電池又稱為“太陽能芯片”或“光電池”,是一種利用太陽光直接發(fā)電的光電半導體薄片。它只要被滿足一定照度條件的光照到,瞬間就可輸出電壓及在有回路的情況下產(chǎn)生電流。在物理學上稱為太陽能光伏(Photovoltaic,縮寫為PV),簡稱光伏。
太陽能電池又稱為“太陽能芯片”或“光電池”,是一種利用太陽光直接發(fā)電的光電半導體薄片。它只要被滿足一定照度條件的光照到,瞬間就可輸出電壓及在有回路的情況下產(chǎn)生電流。在物理學上稱為太陽能光伏(Photovoltaic,縮寫為PV),簡稱光伏。
太陽能電池是通過光電效應或者光化學效應直接把光能轉化成電能的裝置。以光電效應工作的晶硅太陽能電池為主流,而以光化學效應工作的薄膜電池實施太陽能電池則還處于萌芽階段。
太陽光照在半導體p-n結上,形成新的空穴-電子對,在p-n結內(nèi)建電場的作用下,光生空穴流向p區(qū),光生電子流向n區(qū),接通電路后就產(chǎn)生電流。這就是光電效應太陽能電池的工作原理。
太陽能電池又稱為“太陽能芯片”或“光電池”,是一種利用太陽光直接發(fā)電的光電半導體薄片。它只要被滿足一定照度條件的光照到,瞬間就可輸出電壓及在有回路的情況下產(chǎn)生電流。在物理學上稱為太陽能光伏(Photovoltaic,縮寫為PV),簡稱光伏。
太陽能電池是通過光電效應或者光化學效應直接把光能轉化成電能的裝置。以光電效應工作的晶硅太陽能電池為主流,而以光化學效應工作的薄膜電池實施太陽能電池則還處于萌芽階段。
太陽光照在半導體p-n結上,形成新的空穴-電子對,在p-n結內(nèi)建電場的作用下,光生空穴流向p區(qū),光生電子流向n區(qū),接通電路后就產(chǎn)生電流。這就是光電效應太陽能電池的工作原理。
太陽能發(fā)電有兩種方式,一種是光—熱—電轉換方式,另一種是光—電直接轉換方式。
光—熱—電轉換
光—熱—電轉換方式通過利用太陽輻射產(chǎn)生的熱能發(fā)電,一般是由太陽能集熱器將所吸收的熱能轉換成工質的蒸氣,再驅動汽輪機發(fā)電。前一個過程是光—熱轉換過程;后一個過程是熱—電轉換過程,與普通的火力發(fā)電一樣。太陽能熱發(fā)電的缺點是效率很低而成本很高,估計它的投資至少要比普通火電站貴5~10倍。一座1000MW的太陽能熱電站需要投資20~25億美元,平均1kW的投資為2000~2500美元。因此,只能小規(guī)模地應用于特殊的場合,而大規(guī)模利用在經(jīng)濟上很不合算,還不能與普通的火電站或核電站相競爭。
光—電直接轉換
太陽能電池發(fā)電是根據(jù)特定材料的光電性質制成的。黑體(如太陽)輻射出不同波長(對應于不同頻率)的電磁波, 如紅外線、紫外線、可見光等等。當這些射線照射在不同導體或半導體上,光子與導體或半導體中的自由電子作用產(chǎn)生電流。射線的波長越短,頻率越高,所具有的能量就越高,例如紫外線所具有的能量要遠遠高于紅外線。但是并非所有波長的射線的能量都能轉化為電能,值得注意的是光電效應于射線的強度大小無關,只有頻率達到或超越可產(chǎn)生光電效應的閾值時,電流才能產(chǎn)生。能夠使半導體產(chǎn)生光電效應的光的最大波長同該半導體的禁帶寬度相關,譬如晶體硅的禁帶寬度在室溫下約為1.155eV,因此必須波長小于1100nm的光線才可以使晶體硅產(chǎn)生光電效應。 太陽電池發(fā)電是一種可再生的環(huán)保發(fā)電方式,發(fā)電過程中不會產(chǎn)生二氧化碳等溫室氣體,不會對環(huán)境造成污染。按照制作材料分為硅基半導體電池、CdTe薄膜電池、CIGS薄膜電池、染料敏化薄膜電池、有機材料電池等。其中硅電池又分為單晶電池、多晶電池和無定形硅薄膜電池等。對于太陽電池來說最重要的參數(shù)是轉換效率,在實驗室所研發(fā)的硅基太陽能電池中,單晶硅電池效率為25.0%,多晶硅電池效率為20.4%,CIGS薄膜電池效率達19.6%,CdTe薄膜電池效率達16.7%,非晶硅(無定形硅)薄膜電池的效率為10.1%
太陽電池是一種可以將能量轉換的光電元件,其基本構造是運用P型與N型半導體接合而成的。半導體最基本的材料是“硅”,它是不導電的,但如果在半導體中摻入不同的雜質,就可以做成P型與N型半導體,再利用P型半導體有個空穴(P型半導體少了一個帶負電荷的電子,可視為多了一個正電荷),與N型半導體多了一個自由電子的電位差來產(chǎn)生電流,所以當太陽光照射時,光能將硅原子中的電子激發(fā)出來,而產(chǎn)生電子和空穴的對流,這些電子和空穴均會受到內(nèi)建電位的影響,分別被N型及P型半導體吸引,而聚集在兩端。此時外部如果用電極連接起來,形成一個回路,這就是太陽電池發(fā)電的原理。
簡單的說,太陽光電的發(fā)電原理,是利用太陽電池吸收0.4μm~1.1μm波長(針對硅晶)的太陽光,將光能直接轉變成電能輸出的一種發(fā)電方式。
由于太陽電池產(chǎn)生的電是直流電,因此若需提供電力給家電用品或各式電器則需加裝直/交流轉換器,換成交流電,才能供電至家庭用電或工業(yè)用電。
太陽能電池的充電發(fā)展太陽能電池應用在消費性商品上,大多有充電的問題,過去一般的充電對象采用鎳氫或鎳鎘干電池,但是鎳氫干電池無法抗高溫,鎳鎘干電池有環(huán)保污染的問題。超級電容發(fā)展快速,容量超大,面積反縮小,加上價格低廉,因此有部份太陽能產(chǎn)品開始改采超級電容為充電對象,因而改善了太陽能充電的許多問題:
充電較快速,
壽命長5倍以上,
充電溫度范圍較廣,
減少太陽能電池用量(可低壓充電)。
效率達25.62%,自組裝π共軛分子用于抗紫外UV高效鈣鈦礦電池
鈣鈦礦太陽能電池(PSC),尤其是倒置(p-i-n)結構PSC中因紫外線(UV)照射導致界面退化而嚴重影響器件穩(wěn)定性的關鍵挑戰(zhàn)。本研究報道了兩種新型噻吩...
工業(yè)級TOPCon電池的低銀量絲網(wǎng)印刷金屬化技術,實現(xiàn)降銀80%
本文提出了一種銀含量低的絲網(wǎng)印刷金屬化設計,通過在TOPCon太陽能電池中使用銀點陣和銀含量低的浮動指狀結構,顯著減少了銀的使用量,同時保持了高效率。通...
高霧度FTO基板透光率精準調(diào)控,鈣鈦礦太陽能電池效率提升新路徑
高霧度氟摻雜氧化錫(FTO)玻璃基板的光學特性限制了鈣鈦礦太陽能電池(PSCs)的短路電流密度(Jsc)和光電轉換效率(PCE)。為精準量化基板的光學參...
基于厚度梯度設計的TOPCon多晶硅指狀結構,實現(xiàn)25.28%量產(chǎn)效率突破
隧穿氧化層鈍化接觸(TOPCon)技術作為當前太陽能電池領域的核心技術之一,憑借其優(yōu)異的背面鈍化性能,在工業(yè)生產(chǎn)中實現(xiàn)了廣泛應用。然而,多晶硅薄膜材料固...
TOPCon電池鋁觸點工藝:接觸電阻率優(yōu)化實現(xiàn)23.7%效率
隨著TOPCon太陽能電池市占率突破50%,其雙面銀漿消耗量(12–15mg/W)導致生產(chǎn)成本激增。本研究提出以鋁漿替代背面銀觸點,通過材料配方革新與工...
鈣鈦礦太陽能電池PSCs效率突破關鍵:高透光的SnO?電子傳輸層ETL
鈣鈦礦太陽能電池(PSCs)因其超過26.7%的認證效率(PCE)和溶液加工優(yōu)勢,成為光伏領域的研究焦點。電子傳輸層(ETL)作為電荷提取與電池穩(wěn)定性的...
原子層沉積(ALD)制備高透光摻鈮SnO?電子傳輸層(ETL)實現(xiàn)高效鈣鈦礦太陽能電池
鈣鈦礦太陽能電池(PSC)因其高效率和低成本成為光伏領域的研究熱點,但其性能受限于電子傳輸層(ETL)的電荷復合與界面缺陷。SnO?因其高透光性(>...
鉭鈦共摻雜氧化銦電極:構建低缺陷、高透過率的鈣鈦礦/硅四端疊層太陽能電池
透明導電氧化物(TCOs)是半透明及疊層光伏電池的核心組件。傳統(tǒng)ITO電極在近紅外(NIR)波段存在寄生吸收問題,限制了鈣鈦礦/硅疊層電池的效率。對于半...
四端鈣鈦礦/硅疊層太陽能電池效率突破29.34%:機械堆疊-光學耦合的厚度及摻雜濃度優(yōu)化研究
單結太陽能電池的理論效率受限于Shockley-Queisser極限(29.6%),而鈣鈦礦/硅疊層結構通過分光譜吸收可突破這一限制。然而,傳統(tǒng)鈣鈦礦電...
四端鈣鈦礦疊層效率突破30.3%,從PVK/Si到全鈣鈦礦四種主流結構及性能分析
四端(4T)鈣鈦礦疊層太陽能電池(TSCs)通過獨立優(yōu)化子電池并規(guī)避電流匹配限制,展現(xiàn)出顯著效率優(yōu)勢。其模塊化設計支持靈活的材料選擇與制備工藝,成為突破...
PECVD硼發(fā)射極與poly-Si鈍化接觸共退火,實現(xiàn)高效TOPCon電池
TOPCon電池憑借背面超薄SiO?/多晶硅疊層的優(yōu)異鈍化性能,成為n型硅電池主流工藝。然而傳統(tǒng)硼擴散工藝成本較高。本研究提出創(chuàng)新解決方案:PECVD單...
太陽能電池金屬化印刷技術綜述:絲網(wǎng)印刷優(yōu)化、質量控制與新興技術展望
本文全面綜述了硅太陽能電池金屬化印刷技術,重點關注絲網(wǎng)印刷的演進、核心挑戰(zhàn)(如細線柵線、銀漿消耗優(yōu)化)、漿料流變學作用,并通過美能網(wǎng)版智能檢測儀進行質量...
最新Science Bulletin | 蘇州大學研究雙面鈣鈦礦太陽能電池Bi-PSCs,突破23.4%效率
雙面鈣鈦礦太陽能電池(Bi-PSCs)因光子利用率低導致短路電流密度(Jsc)顯著降低,限制了其性能。本文提出通過調(diào)控高濃度鈣鈦礦前驅體的結晶過程,以制...
2025-06-30 標簽:太陽能電池測試系統(tǒng) 405 0
一文看懂晶硅/鈣鈦礦疊層電池:從兩端到四端的結構類型、設計原理與未來展望
太陽能作為清潔能源的核心載體,其高效轉換技術對解決能源危機和環(huán)境問題至關重要。目前,晶硅(c-Si)太陽能電池憑借成熟的制造工藝、高可靠性和環(huán)境友好性,...
天合光能榮膺“2025中國品牌價值評價信息”榜單行業(yè)TOP2
5月10日是國務院批準設立的中國品牌日,由中國品牌建設促進會、中國資產(chǎn)評估協(xié)會主辦,新華社品牌工作辦公室、《中國品牌》雜志社等單位承辦的“2025中國品...
近日,經(jīng)美國國家可再生能源實驗室(NREL)認證,隆基自主研發(fā)的晶硅-鈣鈦礦兩端疊層電池轉換效率達到34.85%,再次刷新晶硅-鈣鈦礦疊層電池轉換效率世...
今日,全球知名知識產(chǎn)權綜合信息服務提供商IPRdaily發(fā)布了《全球太陽能電池及組件發(fā)明專利排行榜(TOP50)》《全球鈣鈦礦太陽能電池發(fā)明專利排行榜(...
光子倍增技術核心:量子裁剪在鐿摻雜金屬鹵化物鈣鈦礦中的光線追蹤分析,16.27%功率躍升
UbiQD公司正在開發(fā)用于太陽能電池組件的新型聚合物封裝技術,通過集成熒光量子點來提升光伏性能。摻鐿鈣鈦礦材料CsPb(Cl???Br?)?具有量子裁剪...
效率突破24.32%!江蘇大學J Mater Sci發(fā)文:雙面鍍銅金屬化n-TOPCon太陽能電池的穩(wěn)定性研究
隨著技術進步,n-TOPCon晶體硅太陽能電池成為主流結構之一,但金屬接觸處理是其在工業(yè)應用中的關鍵挑戰(zhàn)。絲網(wǎng)印刷銀漿工藝雖成熟,但成本高,銅、鎳等金屬...
最新AM:認證效率29.2%,基于透明原位鈍化觸點的鈣鈦礦/硅疊層太陽能電池
鈣鈦礦/硅串聯(lián)太陽能電池因其高功率轉換效率(PCE)而備受關注。然而,n-i-p結構的鈣鈦礦/硅串聯(lián)電池在空穴傳輸層(HTL)方面存在光學缺陷和內(nèi)在不穩(wěn)...
編輯推薦廠商產(chǎn)品技術軟件/工具OS/語言教程專題
電機控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無刷電機 | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機 | PID | MOSFET | 傳感器 | 人工智能 | 物聯(lián)網(wǎng) | NXP | 賽靈思 |
步進電機 | SPWM | 充電樁 | IPM | 機器視覺 | 無人機 | 三菱電機 | ST |
伺服電機 | SVPWM | 光伏發(fā)電 | UPS | AR | 智能電網(wǎng) | 國民技術 | Microchip |
Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |