比較器的原理、分類(lèi)及其新能指標(biāo),比較器與運(yùn)放的區(qū)別
對(duì)兩個(gè)或多個(gè)數(shù)據(jù)項(xiàng)進(jìn)行比較,以確定它們是否相等,或確定它們之間的大小關(guān)系及排列順序稱(chēng)為比較。 能夠?qū)崿F(xiàn)這種比較功能的電路或裝置稱(chēng)為比較器。 比較器是將一個(gè)模擬電壓信號(hào)與一個(gè)基準(zhǔn)電壓相比較的電路。比較器的兩路輸入為模擬信號(hào),輸出則為二進(jìn)制信號(hào)0或1,當(dāng)輸入電壓的差值增大或減小且正負(fù)符號(hào)不變時(shí),其輸出保持恒定。
比較器工作原理
比較器是由運(yùn)算放大器發(fā)展而來(lái)的,比較器電路可以看作是運(yùn)算放大器的一種應(yīng)用電路。由于比較器電路應(yīng)用較為廣泛,所以開(kāi)發(fā)出了專(zhuān)門(mén)的比較器集成電路。
圖4(a)由運(yùn)算放大器組成的差分放大器電路,輸入電壓VA經(jīng)分壓器R2、R3分壓后接在同相端,VB通過(guò)輸入電阻R1接在反相端,RF為反饋電阻,若不考慮輸入失調(diào)電壓,則其輸出電壓Vout與VA、VB及4個(gè)電阻的關(guān)系式為:
Vout=(1+RF/R1)〃R3/(R2+R3)VA-(RF/R1)VB。若R1=R2,R3=RF,則Vout=RF/R1(VA-VB),RF/R1為放大器的增益。當(dāng)R1=R2=0(相當(dāng)于R1、R2短路),R3=RF=∞(相當(dāng)于R3、RF開(kāi)路)時(shí),Vout=∞。增益成為無(wú)窮大,其電路圖就形成圖4(b)的樣子,差分放大器處于開(kāi)環(huán)狀態(tài),它就是比較器電路。實(shí)際上,運(yùn)放處于開(kāi)環(huán)狀態(tài)時(shí),其增益并非無(wú)窮大,而Vout輸出是飽和電壓,它小于正負(fù)電源電壓,也不可能是無(wú)窮大。
從圖4中可以看出,比較器電路就是一個(gè)運(yùn)算放大器電路處于開(kāi)環(huán)狀態(tài)的差分放大器電路。
同相放大器電路如圖5所示。如果圖5中RF=∞,R1=0時(shí),它就變成與圖3(b)一樣的比較器電路了。圖5中的Vin相當(dāng)于圖3(b)中的VA。
比較器與運(yùn)放的差別
運(yùn)放可以做比較器電路,但性能較好的比較器比通用運(yùn)放的開(kāi)環(huán)增益更高,輸入失調(diào)電壓更小,共模輸入電壓范圍更大,壓擺率較高(使比較器響應(yīng)速度更快)。另外,比較器的輸出級(jí)常用集電極開(kāi)路結(jié)構(gòu),如圖6所示,它外部需要接一個(gè)上拉電阻或者直接驅(qū)動(dòng)不同電源電壓的負(fù)載,應(yīng)用上更加靈活。但也有一些比較器為互補(bǔ)輸出,無(wú)需上拉電阻。
這里順便要指出的是,比較器電路本身也有技術(shù)指標(biāo)要求,如精度、響應(yīng)速度、傳播延遲時(shí)間、靈敏度等,大部分參數(shù)與運(yùn)放的參數(shù)相同。在要求不高時(shí)可采用通用運(yùn)放來(lái)作比較器電路。如在A/D變換器電路中要求采用精密比較器電路。 由于比較器與運(yùn)放的內(nèi)部結(jié)構(gòu)基本相同,其大部分參數(shù)(電特性參數(shù))與運(yùn)放的參數(shù)項(xiàng)基本一樣(如輸入失調(diào)電壓、輸入失調(diào)電流、輸入偏置電流等)。
比較器的分類(lèi)
過(guò)零電壓比較器:典型的幅度比較電路,它的電路圖和傳輸特性
電壓比較器:將過(guò)零比較器的一個(gè)輸入端從接地改接到一個(gè)固定電壓值上,就得到電壓比較器。
窗口比較器:電路由兩個(gè)幅度比較器和一些二極管與電阻構(gòu)成。高電平信號(hào)的電位水平高于某規(guī)定值VH的情況,相當(dāng)比較電路正飽和輸出。低電平信號(hào)的電位水平低于某規(guī)定值VL的情況,相當(dāng)比較電路負(fù)飽和輸出。該比較器有兩個(gè)閾值,傳輸特性曲線呈窗口狀,故稱(chēng)為窗口比較器。
滯回比較器:從輸出引一個(gè)電阻分壓支路到同相輸入端,當(dāng)輸入電壓vI從零逐漸增大,且VI小于VT時(shí),比較器輸出為正飽和電壓,VT稱(chēng)為上限閥值(觸發(fā))電平。當(dāng)輸入電壓VI》VT’時(shí),比較器輸出為負(fù)飽和電壓,VT’稱(chēng)為下限閥值(觸發(fā))電平。
比較器的性能指標(biāo)
滯回電壓:比較器兩個(gè)輸入端之間的電壓在過(guò)零時(shí)輸出狀態(tài)將發(fā)生改變,由于輸入端常常疊加有很小的波動(dòng)電壓,這些波動(dòng)所產(chǎn)生的差模電壓會(huì)導(dǎo)致比較器輸出發(fā)生連續(xù)變化,為避免輸出振蕩,新型比較器通常具有幾mV的滯回電壓。滯回電壓的存在使比較器的切換點(diǎn)變?yōu)閮蓚€(gè):一個(gè)用于檢測(cè)上升電壓,一個(gè)用于檢測(cè)下降電壓,電壓門(mén)限(VTRIP)之差等于滯回電壓(VHYST),滯回比較器的失調(diào)電壓是TRIP 和VTRIP-的平均值。不帶滯回的比較器的輸入電壓切換點(diǎn)為輸入失調(diào)電壓,而不是理想比較器的零電壓。失調(diào)電壓一般隨溫度、電源電壓的變化而變化。通常用電源抑制比表示電源電壓變化對(duì)失調(diào)電壓的影響。
偏置電流:理想的比較器的輸入阻抗為無(wú)窮大,因此,理論上對(duì)輸入信號(hào)不產(chǎn)生影響,而實(shí)際比較器的輸入阻抗不可能做到無(wú)窮大,輸入端有電流經(jīng)過(guò)信號(hào)源內(nèi)阻并流入比較器內(nèi)部,從而產(chǎn)生額外的壓差。偏置電流(Ibias)定義為兩個(gè)比較器輸入電流的中值,用于衡量輸入阻抗的影響。MAX917系列比較器的最大偏置電流僅為2nA。
超電源擺幅:為進(jìn)一步優(yōu)化比較器的工作電壓范圍,Maxim公司利用NPN管與PNP管相并聯(lián)的結(jié)構(gòu)作為比較器的輸入級(jí),從而使比較器的輸入電壓得以擴(kuò)展,這樣,其下限可低至最低電平,上限比電源電壓還要高出250mV,因而達(dá)到超電源擺幅(Beyond-theRail)標(biāo)準(zhǔn)。這種比較器的輸入端允許有較大的共模電壓。
漏源電壓:由于比較器僅有兩個(gè)不同的輸出狀態(tài)(零電平或電源電壓),且具有滿(mǎn)電源擺幅特性的比較器的輸出級(jí)為射極跟隨器,這使得其輸入和輸出信號(hào)僅有極小的壓差。該壓差取決于比較器內(nèi)部晶體管飽和狀態(tài)下的發(fā)射結(jié)電壓,對(duì)應(yīng)于MOSFFET的漏源電壓。
輸出延遲時(shí)間:包括信號(hào)通過(guò)元器件產(chǎn)生的傳輸延時(shí)和信號(hào)的上升時(shí)間與下降時(shí)間,對(duì)于高速比較器,如MAX961,其延遲時(shí)間的典型值可對(duì)達(dá)到4.5ns,上升時(shí)間為2.3ns。設(shè)計(jì)時(shí)需注意不同因素對(duì)延遲時(shí)間的影響,其中包括溫度、容性負(fù)載、輸入過(guò)驅(qū)動(dòng)等的影響。
非常好我支持^.^
(415) 63.6%
不好我反對(duì)
(238) 36.4%
相關(guān)閱讀:
- [電子說(shuō)] 國(guó)產(chǎn)運(yùn)放和溫度傳感器介紹 2023-10-24
- [電子說(shuō)] 運(yùn)算放大器反相輸入端電壓高于同相輸入端會(huì)怎樣?輸出是什么樣子? 2023-10-24
- [電子說(shuō)] 運(yùn)放芯片單電源供電和雙電源供電有什么區(qū)別呢?各有什么好處? 2023-10-24
- [電子說(shuō)] 運(yùn)放的基本分析方法 運(yùn)放在有源濾波中的應(yīng)用 2023-10-24
- [電子說(shuō)] 基于555芯片的振蕩器電路分析 2023-10-24
- [電子說(shuō)] 滯回比較器的基本結(jié)構(gòu)、特點(diǎn)及應(yīng)用 2023-10-23
- [電子說(shuō)] 電阻的熱噪聲計(jì)算方法 2023-10-23
- [電子說(shuō)] 滯回比較器介紹 滯回比較器高低閾值計(jì)算 2023-10-23
( 發(fā)表人:王增濤 )