一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀(guān)看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

關(guān)于傳感器和人工智能之間的聯(lián)系和應(yīng)用

Bosch Sensortec ? 來(lái)源:djl ? 2019-10-29 09:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

人工智能AI)目前正在為社會(huì)的方方面面帶來(lái)革新。比如,通過(guò)結(jié)合數(shù)據(jù)挖掘和深度學(xué)習(xí)的優(yōu)勢(shì),如今可以利用人工智能來(lái)分析各種來(lái)源的大量數(shù)據(jù),識(shí)別各種模式、提供交互式理解和進(jìn)行智能預(yù)測(cè)。

這種創(chuàng)新發(fā)展的一個(gè)例子就是將人工智能應(yīng)用于由傳感器生成的數(shù)據(jù),尤其是通過(guò)智能手機(jī)和其他消費(fèi)者設(shè)備所收集的數(shù)據(jù)。運(yùn)動(dòng)傳感器數(shù)據(jù)以及其他信息比如GPS地址,可提供大量不同的數(shù)據(jù)集。因此,問(wèn)題在于:“如何使用人工智能才能充分發(fā)揮這些協(xié)同作用?”

運(yùn)動(dòng)數(shù)據(jù)分析

一個(gè)說(shuō)明性的的真實(shí)應(yīng)用程序?qū)⒖梢酝ㄟ^(guò)分析使用數(shù)據(jù)來(lái)確定用戶(hù)在每個(gè)時(shí)間段的活動(dòng),無(wú)論是在坐姿、走路、跑步或者睡眠情況下。

在這種情況下,智能產(chǎn)品的好處不言而喻:

01提高客戶(hù)生命周期價(jià)值

提高用戶(hù)參與度可以降低客戶(hù)流失率。

02更具競(jìng)爭(zhēng)力的產(chǎn)品定位

下一代智能產(chǎn)品滿(mǎn)足消費(fèi)者日益增長(zhǎng)的期待。

03為終端用戶(hù)創(chuàng)造真正的價(jià)值

對(duì)室內(nèi)運(yùn)動(dòng)的準(zhǔn)確檢測(cè)和分析可實(shí)現(xiàn)靈敏的導(dǎo)航功能、進(jìn)行健康風(fēng)險(xiǎn)監(jiān)控,同時(shí)提高設(shè)備的效率。 對(duì)多種智能手機(jī)和可穿戴平臺(tái)實(shí)際使用情景的深度掌握,將大大有助于產(chǎn)品設(shè)計(jì)師了解用戶(hù)的重復(fù)習(xí)慣和行為,例如確定正確的電池尺寸或確定推送通知的正確時(shí)機(jī)。

智能手機(jī)制造商對(duì)于人工智能功能的興趣正濃,這也正突出了識(shí)別簡(jiǎn)單日?;顒?dòng),如步數(shù)的重要性,這必將發(fā)展為更為深入的分析,例如體育活動(dòng)。對(duì)于像足球這樣的流行體育運(yùn)動(dòng),產(chǎn)品設(shè)計(jì)師不會(huì)只著眼于運(yùn)動(dòng)員,而是會(huì)為更多的人提供便利,比如教練、球迷甚至是廣播公司和運(yùn)動(dòng)服裝設(shè)計(jì)公司等大型公司。這些公司將從深層次的數(shù)據(jù)分析中獲益,從而可以準(zhǔn)確量化、提高和預(yù)測(cè)運(yùn)動(dòng)表現(xiàn)。

數(shù)據(jù)獲取和預(yù)處理

在識(shí)別這一商機(jī)之后,下一個(gè)合理的步驟就是思考如何有效收集這些巨大的數(shù)據(jù)集。

比如在活動(dòng)跟蹤方面,原始數(shù)據(jù)通過(guò)軸向運(yùn)動(dòng)傳感器得以收集,例如智能手機(jī)、可穿戴設(shè)備和其他便攜式設(shè)備中的加速度計(jì)和陀螺儀。這些設(shè)備以完全隱蔽的方式獲取三個(gè)坐標(biāo)軸(x、y、z)上的運(yùn)動(dòng)數(shù)據(jù),即以便于用戶(hù)應(yīng)用的方式連續(xù)跟蹤和評(píng)估活動(dòng)。

訓(xùn)練模型

對(duì)于人工智能的監(jiān)督式學(xué)習(xí),需要用標(biāo)記數(shù)據(jù)來(lái)訓(xùn)練“模型”,以便分類(lèi)引擎可以使用此模型對(duì)實(shí)際用戶(hù)行為進(jìn)行分類(lèi)。舉例來(lái)說(shuō),我們從正在進(jìn)行跑步或是走路的測(cè)試用戶(hù)那里收集運(yùn)動(dòng)數(shù)據(jù),并把這些信息提供給模型來(lái)幫助其學(xué)習(xí)。

由于這基本上是一種一次性方法,簡(jiǎn)單的應(yīng)用程序和照相系統(tǒng)就可以完成給用戶(hù)“貼標(biāo)簽”的任務(wù)。我們的經(jīng)驗(yàn)表明,隨著樣本數(shù)量的增加,在分類(lèi)上的人為錯(cuò)誤率隨之減少。因此,從有限數(shù)量的用戶(hù)那里獲取更多的樣本集比從大量用戶(hù)那里獲得較小的樣本集更有意義。

只獲取原始傳感器數(shù)據(jù)是不夠的。我們觀(guān)察到,要實(shí)現(xiàn)高度準(zhǔn)確的分類(lèi),需要仔細(xì)確定一些特征,即系統(tǒng)需要被告知對(duì)于區(qū)分各個(gè)序列重要的特征或者活動(dòng)。人工學(xué)習(xí)的過(guò)程具有反復(fù)性,在預(yù)處理階段,哪些特征最為重要還尚未明確。因此,設(shè)備必須要依據(jù)可能對(duì)分類(lèi)準(zhǔn)確性有影響的專(zhuān)業(yè)知識(shí)進(jìn)行一些猜測(cè)。

為了進(jìn)行活動(dòng)識(shí)別,指示性特征可以包括“濾波信號(hào)”,例如身體加速(來(lái)自傳感器的原始加速度數(shù)據(jù))或“導(dǎo)出信號(hào)”,例如高速傅里葉變換(FFT)值或標(biāo)準(zhǔn)差計(jì)算。

舉例來(lái)說(shuō),加州大學(xué)歐文分校的機(jī)器學(xué)習(xí)數(shù)據(jù)庫(kù)(UCI)創(chuàng)建了一個(gè)定義了561個(gè)特征的數(shù)據(jù)集,這個(gè)數(shù)據(jù)集以30名志愿者的六項(xiàng)基本活動(dòng),即站立、坐姿、臥姿、行走、下臺(tái)階和上臺(tái)階為基礎(chǔ)。

模式識(shí)別和分類(lèi)

收集了原始運(yùn)動(dòng)數(shù)據(jù)之后,我們需要應(yīng)用機(jī)器學(xué)習(xí)技術(shù)來(lái)將其分類(lèi)并進(jìn)行分析??晒┪覀兪褂玫臋C(jī)器學(xué)習(xí)技術(shù)從邏輯回歸到神經(jīng)網(wǎng)絡(luò)等不一而足。

支持向量機(jī)(SVMs)就是這樣一個(gè)應(yīng)用于人工智能的學(xué)習(xí)模型。身體活動(dòng),比如走路包括了由多種運(yùn)動(dòng)構(gòu)成的序列,由于支持向量機(jī)擅長(zhǎng)于序列分類(lèi),因此它是進(jìn)行活動(dòng)分類(lèi)的合理選擇。

支持向量機(jī)的使用、培訓(xùn)、擴(kuò)展和預(yù)測(cè)均十分簡(jiǎn)單,所以可以輕松地并列設(shè)置多個(gè)樣本采集實(shí)驗(yàn),以用于處理復(fù)雜的現(xiàn)實(shí)生活數(shù)據(jù)集的非線(xiàn)性分類(lèi)。支持向量機(jī)還可實(shí)現(xiàn)多種不同的尺寸和性能優(yōu)化。

確定一項(xiàng)技術(shù)后,我們必須為支持向量機(jī)選擇一個(gè)軟件圖書(shū)館。開(kāi)源庫(kù)LibSVM是一個(gè)很好的選擇,它非常穩(wěn)定并且有詳細(xì)的記錄,支持多類(lèi)分類(lèi),并提供所有主要開(kāi)發(fā)者平臺(tái)從MATLABAndroid的拓展。

持續(xù)分類(lèi)的挑戰(zhàn)

在實(shí)踐中,用戶(hù)在移動(dòng)的同時(shí),使用中的設(shè)備要進(jìn)行實(shí)時(shí)分類(lèi)來(lái)進(jìn)行活動(dòng)識(shí)別。為了將產(chǎn)品成本降到最低,我們需要在不影響結(jié)果也就是信息質(zhì)量的前提下,平衡傳輸、存儲(chǔ)和處理的成本。

假設(shè)我們可以負(fù)擔(dān)數(shù)據(jù)傳輸?shù)馁M(fèi)用,所有數(shù)據(jù)都可以在云端上獲得存儲(chǔ)和處理。實(shí)際上,這會(huì)為用戶(hù)帶來(lái)巨大的數(shù)據(jù)費(fèi)用,用戶(hù)的設(shè)備當(dāng)然要連接互聯(lián)網(wǎng),無(wú)線(xiàn)網(wǎng)絡(luò)、藍(lán)牙4G模塊的費(fèi)用不可避免地將進(jìn)一步提升設(shè)備成本。

更糟糕的是,在非城市地區(qū),3G網(wǎng)絡(luò)的訪(fǎng)問(wèn)效果通常不理想,例如徒步旅行、騎自行車(chē)或游泳時(shí)。這種對(duì)云端的大量數(shù)據(jù)傳輸?shù)囊蕾?lài)會(huì)使更新變慢,并且需要定期同步,從而大大抵消人工智能運(yùn)動(dòng)分析帶來(lái)的實(shí)際益處。與之相反,僅在設(shè)備的主處理器上處理這些操作會(huì)明顯導(dǎo)致耗電量的增加,并且減少其他應(yīng)用的執(zhí)行周期。同理,將所有數(shù)據(jù)都儲(chǔ)存在設(shè)備上會(huì)增加存儲(chǔ)成本。

化圓為方

為了解決這些彼此沖突的問(wèn)題,我們可以遵循四個(gè)原則:

01拆分 --將特征處理從分類(lèi)引擎的執(zhí)行中拆分。

02減少 --智能選擇準(zhǔn)確的活動(dòng)識(shí)別所需的特征,來(lái)減少存儲(chǔ)和處理的需求量。

03使用 --使用的傳感器須能夠以較低耗電量獲取數(shù)據(jù)、實(shí)施傳感器融合(將多個(gè)傳感器的數(shù)據(jù)結(jié)合在一起),并且能夠?yàn)槌掷m(xù)執(zhí)行進(jìn)行特征預(yù)處理。

04保留 --保留能夠確定用戶(hù)活動(dòng)的系統(tǒng)支持性數(shù)據(jù)的模型。

通過(guò)將特征處理與分類(lèi)引擎的執(zhí)行拆分,與加速度和陀螺儀傳感器連接的處理器可以小得多。這有效避免了將實(shí)時(shí)數(shù)據(jù)塊連續(xù)傳輸?shù)礁鼜?qiáng)大的處理器的需求。諸如用于將時(shí)間域信號(hào)變換為頻率域信號(hào)的高速傅里葉變換的特征處理將需要低功耗融核處理器,以執(zhí)行浮點(diǎn)運(yùn)算。

此外,在現(xiàn)實(shí)世界中,單個(gè)傳感器存在物理限制,并且其輸出隨時(shí)間發(fā)生偏差,例如由于由焊接和溫度引起的偏移和非線(xiàn)性縮放。為了補(bǔ)償這種不規(guī)則性,需要傳感器融合,以及快速、內(nèi)聯(lián)和自動(dòng)的校準(zhǔn)。

圖上:活動(dòng)分類(lèi)的功能流程(來(lái)源Bosch Sensortec)

此外,所選擇的數(shù)據(jù)捕獲速率可以顯著影響所需的計(jì)算和傳輸量。通常來(lái)說(shuō),50Hz采樣率對(duì)于正常的人類(lèi)活動(dòng)就足夠了。但在對(duì)快速移動(dòng)的活動(dòng)或運(yùn)動(dòng)進(jìn)行分析時(shí),需要200 Hz的采樣率。同樣地,為了取得更快的響應(yīng)時(shí)間,可以安裝2 kHz單獨(dú)加速計(jì)來(lái)確定用戶(hù)目的。

為了迎接這些挑戰(zhàn),低功耗或者應(yīng)用特定傳感器集線(xiàn)器可以顯著降低分類(lèi)引擎所需的CPU周期。比如Bosch Sensortec的BHI160和BNO055兩個(gè)產(chǎn)品就是這種傳感器集線(xiàn)器。相關(guān)軟件可直接以不同的傳感器數(shù)據(jù)速率直接生成融合后的傳感器輸出。

圖左:智能傳感器集線(xiàn)器BHI160:用于活動(dòng)識(shí)別的低功耗智能集線(xiàn)器,專(zhuān)為持續(xù)運(yùn)動(dòng)傳感而設(shè)計(jì)。

圖右:應(yīng)用特定傳感器節(jié)點(diǎn) BNO055:智能9軸“絕對(duì)定位傳感器”在單個(gè)封裝中將傳感器和傳感器彼此融合。

對(duì)待處理特征的初始選擇隨后會(huì)極大地影響訓(xùn)練模型的大小、數(shù)據(jù)量以及訓(xùn)練和執(zhí)行內(nèi)聯(lián)預(yù)測(cè)所需的計(jì)算能力。因此,對(duì)特定活動(dòng)分類(lèi)和區(qū)分所需的特征進(jìn)行選擇是一項(xiàng)關(guān)鍵的決定,同時(shí)也很可能是重要的商業(yè)優(yōu)勢(shì)。

回顧我們上文提到的UCI機(jī)器學(xué)習(xí)數(shù)據(jù)庫(kù),其擁有561個(gè)特征的完整數(shù)據(jù)集,使用默認(rèn)的LibSVM內(nèi)核訓(xùn)練的模型進(jìn)行活動(dòng)分類(lèi)的測(cè)試準(zhǔn)確度高達(dá)91.84%。然而,完成培訓(xùn)和特征排名后,選擇最重要的19項(xiàng)功能足以達(dá)到85.38%的活動(dòng)分類(lèi)測(cè)試準(zhǔn)確度。經(jīng)過(guò)對(duì)排名進(jìn)行仔細(xì)檢查,我們發(fā)現(xiàn)最相關(guān)的特征是頻域變換以及滑動(dòng)窗口加速度原始數(shù)據(jù)的平均值、最大值和最小值。有趣的是,這些特征都不能僅僅通過(guò)預(yù)處理實(shí)現(xiàn),傳感器融合對(duì)于確保數(shù)據(jù)的足夠可靠性十分必要,并因此對(duì)分類(lèi)尤為實(shí)用。

結(jié)論

總而言之,科技發(fā)展現(xiàn)在已經(jīng)達(dá)到在便攜式設(shè)備上運(yùn)行高級(jí)人工智能來(lái)分析運(yùn)動(dòng)傳感器的數(shù)據(jù)的程度。這些現(xiàn)代傳感器以低功耗運(yùn)行,而傳感器融合和軟件分區(qū)則明顯提高了整個(gè)系統(tǒng)的效率和可行性,同時(shí)也大大簡(jiǎn)化了應(yīng)用程序開(kāi)發(fā)。

為了補(bǔ)充傳感器的基礎(chǔ)架構(gòu),我們利用開(kāi)源庫(kù)和最佳實(shí)踐來(lái)優(yōu)化特征提取和分類(lèi)。

為用戶(hù)提供真正的個(gè)性化體驗(yàn)已成為現(xiàn)實(shí),通過(guò)人工智能,系統(tǒng)可以利用由智能手機(jī)、可穿戴和其他便攜設(shè)備的傳感器所收集的數(shù)據(jù),為人們提供更多深度功能。未來(lái)幾年,一系列現(xiàn)在還難以想象的設(shè)備和解決方案將會(huì)得到更多發(fā)展。人工智能和傳感器為設(shè)計(jì)師和用戶(hù)打開(kāi)了一個(gè)充滿(mǎn)了激動(dòng)人心的機(jī)會(huì)的新世界。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀(guān)點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 傳感器
    +關(guān)注

    關(guān)注

    2564

    文章

    52793

    瀏覽量

    765469
  • 人工智能
    +關(guān)注

    關(guān)注

    1805

    文章

    48899

    瀏覽量

    247995
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    分貝單位與振動(dòng)傳感器聯(lián)系

    分貝單位與振動(dòng)傳感器之間存在緊密的聯(lián)系,這種聯(lián)系主要體現(xiàn)在振動(dòng)傳感器的動(dòng)態(tài)范圍測(cè)量和振動(dòng)信號(hào)的量化表達(dá)上。以下是對(duì)這種
    的頭像 發(fā)表于 02-17 15:21 ?525次閱讀

    云計(jì)算和人工智能有什么區(qū)別和聯(lián)系

    云計(jì)算和人工智能雖然各自具有獨(dú)特的特點(diǎn)和應(yīng)用領(lǐng)域,但它們之間存在著緊密的聯(lián)系和互動(dòng)。接下來(lái),AI部落小編帶您了解云計(jì)算和人工智能的區(qū)別與聯(lián)系
    的頭像 發(fā)表于 02-06 10:08 ?469次閱讀

    傳感器人工智能感知這個(gè)世界

    2024-12-10 人工智能(AI)和傳感器的結(jié)合在多個(gè)領(lǐng)域有廣泛應(yīng)用和迅速的發(fā)展,特別是在自動(dòng)化、物聯(lián)網(wǎng)(IoT)、醫(yī)療、智能城市以及工業(yè)4.0等領(lǐng)域。傳感器的功能是收集環(huán)境中的物
    的頭像 發(fā)表于 01-25 15:46 ?658次閱讀

    智能傳感器如何推動(dòng)邊緣人工智能普及化

    ? ? ? ? ? 智能傳感器推動(dòng) 邊緣AI普及化 ? ? ? ? 前言 英偉達(dá)公司(Nvidia)于日前發(fā)布了全新的50系顯卡,在提高游戲性能的同時(shí),著重優(yōu)化了人工智能(AI)表現(xiàn),這對(duì)于目前
    的頭像 發(fā)表于 01-15 14:26 ?753次閱讀
    看<b class='flag-5'>智能</b><b class='flag-5'>傳感器</b>如何推動(dòng)邊緣<b class='flag-5'>人工智能</b>普及化

    博世人工智能傳感器如何改變生活

    傳感器技術(shù)正在重塑我們的生活。例如,它們可以追蹤健身數(shù)據(jù),簡(jiǎn)化設(shè)備操作,或監(jiān)測(cè)空氣質(zhì)量。為了向消費(fèi)者提供這些復(fù)雜的功能,Bosch Sensortec的傳感器正在不斷進(jìn)化,集成了微機(jī)電系統(tǒng)(MEMS)技術(shù)、嵌入式微控制、軟件以
    的頭像 發(fā)表于 01-08 14:49 ?642次閱讀

    嵌入式和人工智能究竟是什么關(guān)系?

    嵌入式和人工智能究竟是什么關(guān)系? 嵌入式系統(tǒng)是一種特殊的系統(tǒng),它通常被嵌入到其他設(shè)備或機(jī)器中,以實(shí)現(xiàn)特定功能。嵌入式系統(tǒng)具有非常強(qiáng)的適應(yīng)性和靈活性,能夠根據(jù)用戶(hù)需求進(jìn)行定制化設(shè)計(jì)。它廣泛應(yīng)用于各種
    發(fā)表于 11-14 16:39

    Meta正努力推進(jìn)人工智能觸覺(jué)傳感器的市場(chǎng)化進(jìn)程

    11月1日,據(jù)TechCrunch報(bào)道,Meta近期宣布與傳感器專(zhuān)家GelSight及韓國(guó)機(jī)器人企業(yè)Wonik Robotics攜手,共同推進(jìn)人工智能(AI)觸覺(jué)傳感器的市場(chǎng)化進(jìn)程。   Meta強(qiáng)調(diào),此次合作的核心在于利
    的頭像 發(fā)表于 11-01 15:57 ?999次閱讀

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第6章人AI與能源科學(xué)讀后感

    幸得一好書(shū),特此來(lái)分享。感謝平臺(tái),感謝作者。受益匪淺。 在閱讀《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》的第6章后,我深刻感受到人工智能在能源科學(xué)領(lǐng)域中的巨大潛力和廣泛應(yīng)用。這一章詳細(xì)
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    很幸運(yùn)社區(qū)給我一個(gè)閱讀此書(shū)的機(jī)會(huì),感謝平臺(tái)。 《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章關(guān)于AI與生命科學(xué)的部分,為我們揭示了人工智能技術(shù)在生命科學(xué)領(lǐng)域中的廣泛應(yīng)用和深遠(yuǎn)影響。在
    發(fā)表于 10-14 09:21

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第一章人工智能驅(qū)動(dòng)的科學(xué)創(chuàng)新學(xué)習(xí)心得

    人工智能:科學(xué)研究的加速 第一章清晰地闡述了人工智能作為科學(xué)研究工具的強(qiáng)大功能。通過(guò)機(jī)器學(xué)習(xí)、深度學(xué)習(xí)等先進(jìn)技術(shù),AI能夠處理和分析海量數(shù)據(jù),發(fā)現(xiàn)傳統(tǒng)方法難以捕捉的模式和規(guī)律。這不僅極大地提高了數(shù)據(jù)處理
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應(yīng)用前景分析

    長(zhǎng)時(shí)間運(yùn)行或電池供電的設(shè)備尤為重要。 高性能 : 盡管RISC-V架構(gòu)以低功耗著稱(chēng),但其高性能也不容忽視。通過(guò)優(yōu)化指令集和處理設(shè)計(jì),RISC-V可以在處理復(fù)雜的人工智能圖像處理任務(wù)時(shí)表現(xiàn)出色。 三
    發(fā)表于 09-28 11:00

    名單公布!【書(shū)籍評(píng)測(cè)活動(dòng)NO.44】AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新

    ! 《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》 這本書(shū)便將為讀者徐徐展開(kāi)AI for Science的美麗圖景,與大家一起去了解: 人工智能究竟幫科學(xué)家做了什么? 人工智能將如何改變我們所生
    發(fā)表于 09-09 13:54

    報(bào)名開(kāi)啟!深圳(國(guó)際)通用人工智能大會(huì)將啟幕,國(guó)內(nèi)外大咖齊聚話(huà)AI

    8月28日至30日,2024深圳(國(guó)際)通用人工智能大會(huì)暨深圳(國(guó)際)通用人工智能產(chǎn)業(yè)博覽會(huì)將在深圳國(guó)際會(huì)展中心(寶安)舉辦。大會(huì)以“魅力AI·無(wú)限未來(lái)”為主題,致力于打造全球通用人工智能領(lǐng)域集產(chǎn)品
    發(fā)表于 08-22 15:00

    FPGA在人工智能中的應(yīng)用有哪些?

    FPGA(現(xiàn)場(chǎng)可編程門(mén)陣列)在人工智能領(lǐng)域的應(yīng)用非常廣泛,主要體現(xiàn)在以下幾個(gè)方面: 一、深度學(xué)習(xí)加速 訓(xùn)練和推理過(guò)程加速:FPGA可以用來(lái)加速深度學(xué)習(xí)的訓(xùn)練和推理過(guò)程。由于其高并行性和低延遲特性
    發(fā)表于 07-29 17:05

    神經(jīng)網(wǎng)絡(luò)和人工智能的關(guān)系

    在快速發(fā)展的科技領(lǐng)域,人工智能(Artificial Intelligence, AI)和神經(jīng)網(wǎng)絡(luò)(Neural Networks)是兩個(gè)備受矚目的概念。它們之間聯(lián)系緊密而復(fù)雜,共同推動(dòng)了
    的頭像 發(fā)表于 07-01 14:23 ?1615次閱讀