一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

了解采用機(jī)器學(xué)習(xí)訓(xùn)練數(shù)據(jù)帶來的好處

我快閉嘴 ? 來源:企業(yè)網(wǎng)D1Net ? 作者:David Linthicum ? 2020-07-07 09:30 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

隨著機(jī)器學(xué)習(xí)應(yīng)用的增多,很多人需要了解采用機(jī)器學(xué)習(xí)訓(xùn)練數(shù)據(jù)的好處。

如果用戶使用基于機(jī)器學(xué)習(xí)的系統(tǒng),那么需要了解有關(guān)訓(xùn)練數(shù)據(jù)的知識(shí)。在將數(shù)據(jù)加載到人工智能模型以進(jìn)行模型訓(xùn)練之前,必須正確格式化數(shù)據(jù)并確保其準(zhǔn)確性。

假設(shè)用戶正在使用公共云中流行的機(jī)器學(xué)習(xí)系統(tǒng)創(chuàng)建欺詐檢測(cè)引擎。首先需要?jiǎng)?chuàng)建用于訓(xùn)練模型的數(shù)據(jù)集:而在這個(gè)案例中將處理數(shù)百萬個(gè)帶有欺詐交易標(biāo)記的交易記錄。這樣,通過模型就可以了解哪些可能是欺詐的,哪些不是。當(dāng)然,訓(xùn)練數(shù)據(jù)有不同類型,有些帶有標(biāo)記,有些沒有。

經(jīng)過訓(xùn)練之后,這種模型實(shí)際上可以通過了解可能的欺詐行為而不是通過經(jīng)驗(yàn)學(xué)習(xí)來繼續(xù)訓(xùn)練。如果用戶有時(shí)間的話,這個(gè)模型可以通過監(jiān)控那些被工作人員或其他系統(tǒng)標(biāo)記為欺詐的交易來訓(xùn)練自己。

這種人工智能訓(xùn)練方法令人印象深刻的是,用戶需要一個(gè)完善的訓(xùn)練數(shù)據(jù)集。在某些情況下,可以從公開或?qū)S械挠?xùn)練數(shù)據(jù)代理那里獲取。在大多數(shù)情況下,用戶可以格式化自己的數(shù)據(jù)來訓(xùn)練機(jī)器學(xué)習(xí)模型。但是,是否有可以隨時(shí)隨地進(jìn)行訓(xùn)練的機(jī)器學(xué)習(xí)模型?

這個(gè)想法并不新鮮。自從人工智能出現(xiàn)以來,人們一直想讓人工智能引擎教會(huì)另一個(gè)人工智能引擎,也就是共享訓(xùn)練數(shù)據(jù)。或者更好的辦法是,通過自動(dòng)的直接交互來共享知識(shí)和經(jīng)驗(yàn)?;蛘咄ㄟ^人工智能引擎指導(dǎo)者提供外部經(jīng)驗(yàn),從而使人工智能模型更有價(jià)值和更有效。

這說起來容易做起來難。機(jī)器學(xué)習(xí)引擎即使采用相同的軟件,也通常不會(huì)互相對(duì)話。對(duì)于獨(dú)立的學(xué)習(xí)者需要從頭開始設(shè)計(jì),并與非人工智能系統(tǒng)或人類進(jìn)行交互。但是,大多數(shù)供應(yīng)商都在進(jìn)行人工智能引擎之間的訓(xùn)練。

最近人們將看到一些可能改變游戲規(guī)則的主要趨勢(shì):

首先,是使用按需或基于SaaS的人工智能引擎,該引擎可以與公共云或內(nèi)部部署的其他人工智能引擎進(jìn)行交互??梢詫⑺鼈円暈镾aaS,這個(gè)云平臺(tái)專門針對(duì)其他人工智能引擎講授特定技能集,從發(fā)現(xiàn)欺詐性交易、醫(yī)療診斷到機(jī)器維護(hù)等等。

其次,人工智能引擎能夠與其教學(xué)模型相結(jié)合,創(chuàng)造出各種人工智能的超級(jí)大腦,不僅能在其領(lǐng)域之外提供經(jīng)驗(yàn),還能與自己的訓(xùn)練數(shù)據(jù)相結(jié)合,提供本地和全球的體驗(yàn)。

之所以提出這一點(diǎn),是因?yàn)榇蠖鄶?shù)企業(yè)要想從人工智能中獲得更多價(jià)值,就需要了解這些趨勢(shì),其中包括機(jī)器學(xué)習(xí)和深度學(xué)習(xí)。而且,許多企業(yè)正陷入沒有足夠的訓(xùn)練數(shù)據(jù)來使機(jī)器學(xué)習(xí)正常運(yùn)行的困境。這可能是解決這兩個(gè)問題的很好的辦法。
責(zé)任編輯:tzh

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1806

    文章

    49011

    瀏覽量

    249360
  • 引擎
    +關(guān)注

    關(guān)注

    1

    文章

    366

    瀏覽量

    22997
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8502

    瀏覽量

    134592
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    【「# ROS 2智能機(jī)器人開發(fā)實(shí)踐」閱讀體驗(yàn)】機(jī)器人入門的引路書

    的限制和調(diào)控) 本書還有很多前沿技術(shù)項(xiàng)目的擴(kuò)展 比如神經(jīng)網(wǎng)絡(luò)識(shí)別例程,機(jī)器學(xué)習(xí)圖像識(shí)別的原理,yolo圖像追蹤的原理 機(jī)器學(xué)習(xí)訓(xùn)練三大點(diǎn):
    發(fā)表于 04-30 01:05

    海思SD3403邊緣計(jì)算AI數(shù)據(jù)訓(xùn)練概述

    AI數(shù)據(jù)訓(xùn)練:基于用戶特定應(yīng)用場(chǎng)景,用戶采集照片或視頻,通過AI數(shù)據(jù)訓(xùn)練工程師**(用戶公司****員工)** ,進(jìn)行特征標(biāo)定后,將標(biāo)定好的訓(xùn)練
    發(fā)表于 04-28 11:11

    **【技術(shù)干貨】Nordic nRF54系列芯片:傳感器數(shù)據(jù)采集與AI機(jī)器學(xué)習(xí)的完美結(jié)合**

    傳感器數(shù)據(jù)采集與AI機(jī)器學(xué)習(xí)領(lǐng)域的明星產(chǎn)品。想深入了解?快來評(píng)論區(qū)交流,或點(diǎn)擊[鏈接]獲取更多技術(shù)細(xì)節(jié)! ? #nRF54 #AI機(jī)器
    發(fā)表于 04-01 00:00

    數(shù)據(jù)標(biāo)注服務(wù)—奠定大模型訓(xùn)練數(shù)據(jù)基石

    數(shù)據(jù)標(biāo)注是大模型訓(xùn)練過程中不可或缺的基礎(chǔ)環(huán)節(jié),其質(zhì)量直接影響著模型的性能表現(xiàn)。在大模型訓(xùn)練中,數(shù)據(jù)標(biāo)注承擔(dān)著將原始數(shù)據(jù)轉(zhuǎn)化為
    的頭像 發(fā)表于 03-21 10:30 ?760次閱讀

    標(biāo)貝數(shù)據(jù)標(biāo)注服務(wù):奠定大模型訓(xùn)練數(shù)據(jù)基石

    數(shù)據(jù)標(biāo)注是大模型訓(xùn)練過程中不可或缺的基礎(chǔ)環(huán)節(jié),其質(zhì)量直接影響著模型的性能表現(xiàn)。在大模型訓(xùn)練中,數(shù)據(jù)標(biāo)注承擔(dān)著將原始數(shù)據(jù)轉(zhuǎn)化為
    的頭像 發(fā)表于 03-21 10:27 ?563次閱讀
    標(biāo)貝<b class='flag-5'>數(shù)據(jù)</b>標(biāo)注服務(wù):奠定大模型<b class='flag-5'>訓(xùn)練</b>的<b class='flag-5'>數(shù)據(jù)</b>基石

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開發(fā)生物學(xué)數(shù)據(jù)機(jī)器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個(gè)強(qiáng)大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與深度學(xué)習(xí)相比
    的頭像 發(fā)表于 12-30 09:16 ?1184次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    《具身智能機(jī)器人系統(tǒng)》第7-9章閱讀心得之具身智能機(jī)器人與大模型

    和經(jīng)驗(yàn)積累,使機(jī)器人能夠自主發(fā)現(xiàn)工藝規(guī)律,優(yōu)化作業(yè)參數(shù)。家庭服務(wù)機(jī)器人則采用混合任務(wù)規(guī)劃策略:將預(yù)訓(xùn)練的基礎(chǔ)技能與實(shí)時(shí)規(guī)劃相結(jié)合,靈活應(yīng)對(duì)開放環(huán)境中的各種情況。 第9章深入探討了元
    發(fā)表于 12-24 15:03

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】+數(shù)據(jù)在具身人工智能中的價(jià)值

    ,數(shù)據(jù)對(duì)于訓(xùn)練增強(qiáng)和優(yōu)化機(jī)器人能力的深度學(xué)習(xí)模型至關(guān)重要。 從財(cái)務(wù)上講,用戶數(shù)據(jù)對(duì)互聯(lián)網(wǎng)公司具有重要價(jià)值,估計(jì)每個(gè)用戶 600 美元,考慮到
    發(fā)表于 12-24 00:33

    構(gòu)建云原生機(jī)器學(xué)習(xí)平臺(tái)流程

    構(gòu)建云原生機(jī)器學(xué)習(xí)平臺(tái)是一個(gè)復(fù)雜而系統(tǒng)的過程,涉及數(shù)據(jù)收集、處理、特征提取、模型訓(xùn)練、評(píng)估、部署和監(jiān)控等多個(gè)環(huán)節(jié)。
    的頭像 發(fā)表于 12-14 10:34 ?431次閱讀

    什么是機(jī)器學(xué)習(xí)?通過機(jī)器學(xué)習(xí)方法能解決哪些問題?

    來源:Master編程樹“機(jī)器學(xué)習(xí)”最初的研究動(dòng)機(jī)是讓計(jì)算機(jī)系統(tǒng)具有人的學(xué)習(xí)能力以便實(shí)現(xiàn)人工智能。因?yàn)闆]有學(xué)習(xí)能力的系統(tǒng)很難被認(rèn)為是具有智能的。目前被廣泛
    的頭像 發(fā)表于 11-16 01:07 ?963次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問題?

    LLM和傳統(tǒng)機(jī)器學(xué)習(xí)的區(qū)別

    訓(xùn)練方法 LLM: 預(yù)訓(xùn)練和微調(diào): LLM通常采用預(yù)訓(xùn)練(Pre-training)和微調(diào)(Fine-tuning)的方法。預(yù)訓(xùn)練階段,模
    的頭像 發(fā)表于 11-08 09:25 ?1881次閱讀

    Pytorch深度學(xué)習(xí)訓(xùn)練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學(xué)習(xí)訓(xùn)練。
    的頭像 發(fā)表于 10-28 14:05 ?652次閱讀
    Pytorch深度<b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>訓(xùn)練</b>的方法

    AI大模型與傳統(tǒng)機(jī)器學(xué)習(xí)的區(qū)別

    多個(gè)神經(jīng)網(wǎng)絡(luò)層組成,每個(gè)層都包含大量的神經(jīng)元和權(quán)重參數(shù)。 傳統(tǒng)機(jī)器學(xué)習(xí) :模型規(guī)模相對(duì)較小,參數(shù)數(shù)量通常只有幾千到幾百萬個(gè),模型結(jié)構(gòu)相對(duì)簡(jiǎn)單。 二、訓(xùn)練數(shù)據(jù)需求 AI大模型 :需要大規(guī)
    的頭像 發(fā)表于 10-23 15:01 ?2565次閱讀

    直播預(yù)約 |數(shù)據(jù)智能系列講座第4期:預(yù)訓(xùn)練的基礎(chǔ)模型下的持續(xù)學(xué)習(xí)

    鷺島論壇數(shù)據(jù)智能系列講座第4期「預(yù)訓(xùn)練的基礎(chǔ)模型下的持續(xù)學(xué)習(xí)」10月30日(周三)20:00精彩開播期待與您云相聚,共襄學(xué)術(shù)盛宴!|直播信息報(bào)告題目預(yù)訓(xùn)練的基礎(chǔ)模型下的持續(xù)
    的頭像 發(fā)表于 10-18 08:09 ?590次閱讀
    直播預(yù)約 |<b class='flag-5'>數(shù)據(jù)</b>智能系列講座第4期:預(yù)<b class='flag-5'>訓(xùn)練</b>的基礎(chǔ)模型下的持續(xù)<b class='flag-5'>學(xué)習(xí)</b>

    【《時(shí)間序列與機(jī)器學(xué)習(xí)》閱讀體驗(yàn)】+ 了解時(shí)間序列

    收到《時(shí)間序列與機(jī)器學(xué)習(xí)》一書,彩色印刷,公式代碼清晰,非常精美。感謝作者,感謝電子發(fā)燒友提供了一個(gè)讓我學(xué)習(xí)時(shí)間序列及應(yīng)用的機(jī)會(huì)! 前言第一段描述了編寫背景: 由此可知,這是一本關(guān)于時(shí)間序列進(jìn)行大
    發(fā)表于 08-11 17:55