一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

微軟開源的計算機視覺庫

新機器視覺 ? 來源:機器之心 ? 2020-08-28 11:34 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本文介紹了微軟開源的計算機視覺庫,它囊括了計算機視覺領(lǐng)域的最佳實踐、代碼示例和豐富文檔。

近年來,計算機視覺領(lǐng)域突飛猛進,在人臉識別、圖像理解、搜索、無人機、地圖、半自動和自動駕駛方面得到廣泛應(yīng)用。而這些應(yīng)用的核心部分是視覺識別任務(wù),如圖像分類、目標(biāo)檢測和圖像相似度。 在各種計算機視覺模型和應(yīng)用層出不窮的當(dāng)下,如何把握發(fā)展脈絡(luò),跟進領(lǐng)域前沿發(fā)展呢?微軟創(chuàng)建了一個庫,提供構(gòu)建計算機視覺系統(tǒng)的大量示例和最佳實踐指導(dǎo)原則。 項目地址:https://github.com/microsoft/computervision-recipes 這個庫旨在構(gòu)建一個全面的集合,涵蓋利用了計算機視覺算法、神經(jīng)架構(gòu)和系統(tǒng)運行方面近期進展的工具和示例。 該庫沒有從頭開始創(chuàng)建實現(xiàn),而是基于已有的 SOTA 庫發(fā)展而來,并圍繞加載圖像數(shù)據(jù)、優(yōu)化和評估模型、擴展至云端構(gòu)建了額外的工具函數(shù)。此外,微軟團隊表示,希望通過該項目回答計算機視覺領(lǐng)域的常見問題、指出頻繁出現(xiàn)的缺陷問題,并展示如何利用云進行模型訓(xùn)練和部署。 該庫中所有示例以 Jupyter notebooks 和常見工具函數(shù)的形式呈現(xiàn)。所有示例均使用 PyTorch 作為底層深度學(xué)習(xí)庫。

Jupyter notebooks 地址:https://github.com/microsoft/computervision-recipes/blob/master/scenarios

工具函數(shù)地址:https://github.com/microsoft/computervision-recipes/blob/master/utils_cv

目標(biāo)群體 該庫的目標(biāo)群體是具備一定計算機視覺知識背景的數(shù)據(jù)科學(xué)家和機器學(xué)習(xí)工程師,因為庫的內(nèi)容以 source-only(僅源代碼)的形式呈現(xiàn),支持自定義機器學(xué)習(xí)建模。這個庫提供的工具函數(shù)和示例旨在為現(xiàn)實世界的視覺問題提供解決方案加速器。 示例 該庫支持不同的計算機視覺場景,如基于單張圖像運行,示例如下:

或基于視頻序列的動作識別等場景,示例如下:

場景 該庫涵蓋常用的計算機視覺場景,包含如下類別:

對于每個主要場景(base),該項目均提供使用戶高效構(gòu)建自己模型的工具。這需要使用者完成一些任務(wù),如基于自己的數(shù)據(jù)微調(diào)模型的簡單任務(wù),或者難例挖掘甚至模型部署等更復(fù)雜的任務(wù)。 1. 圖像分類任務(wù) 該目錄提供了構(gòu)建圖像分類系統(tǒng)的示例和最佳實踐,旨在讓用戶能夠在自己的數(shù)據(jù)集上輕松快速地訓(xùn)練高準(zhǔn)確率分類器。 這里提供的示例 notebook 具備預(yù)置的默認(rèn)參數(shù),可以很好地處理多個數(shù)據(jù)集。該目錄還提供了有關(guān)常見缺陷和最佳實踐的大量文檔。 此外,該庫還展示了如何使用微軟的云計算平臺 Azure,加快在大型數(shù)據(jù)集上的訓(xùn)練速度或?qū)⒛P筒渴馂?web 服務(wù)。

2. 圖像相似度 該目錄提供了構(gòu)建圖像相似度系統(tǒng)的示例和最佳實踐,旨在使用戶能夠基于自己的數(shù)據(jù)集方便快捷地訓(xùn)練高精度模型。 下圖為圖像檢索示例,其中左圖為查詢圖像,右面為與之最相似的 6 幅圖像:

3. 目標(biāo)檢測 該目錄提供了構(gòu)建目標(biāo)檢測系統(tǒng)的示例和最佳實踐,旨在使用戶能夠基于自己的數(shù)據(jù)集方便快捷地訓(xùn)練高準(zhǔn)確率模型。

該庫使用了 torchvision 的 Faster R-CNN 實現(xiàn),它被證明能夠很好地處理多種計算機視覺問題。 項目作者建議使用者在具備 GPU 的機器上運行示例,雖然 GPU 在技術(shù)層面上并非必需,但是如果不使用 GPU,即使只用幾十個圖像,訓(xùn)練過程也會變得非常緩慢。 4. 關(guān)鍵點檢測 該目錄包含構(gòu)建關(guān)鍵點檢測系統(tǒng)的示例和最佳實踐指導(dǎo)原則,并展示了如何使用預(yù)訓(xùn)練模型進行人體姿勢估計。 該目錄使用了 Mask R-CNN 的擴展,可以同時檢測物體及其關(guān)鍵點。其底層技術(shù)與上述目標(biāo)檢測方法類似,即基于 Torchvision 的 Mask R-CNN。

5. 圖像分割 該目錄提供了構(gòu)建圖像分割系統(tǒng)的示例和最佳實踐,旨在使用戶能夠基于自己的數(shù)據(jù)集方便快捷地訓(xùn)練高準(zhǔn)確率模型。

這里的實現(xiàn)使用了 fastai 的 UNet 模型,其中 CNN 主干(如 ResNet)在 ImageNet 數(shù)據(jù)集上經(jīng)過預(yù)訓(xùn)練,因此使用者只需少量標(biāo)注訓(xùn)練樣本就可以對其進行微調(diào)。 6. 動作識別 該目錄包含構(gòu)建基于視頻的動作識別系統(tǒng)所需要的資源,旨在使用戶能夠在自定義數(shù)據(jù)集上輕松快速地訓(xùn)練出高準(zhǔn)確率的快速模型。 動作識別(也叫「活動識別」)包括從一系列幀中對多種動作進行分類,例如「閱讀」或「飲酒」:

動作識別是一個熱門的研究領(lǐng)域,每年都有大量的方法發(fā)表。其中一個突出的方法是 R(2+1)D 模型,它能夠獲得高準(zhǔn)確率,且比其他方法快得多。(參見論文《Large-scale weakly-supervised pre-training for video action recognition》) 該目錄中的實現(xiàn)和預(yù)訓(xùn)練權(quán)重均基于這個 GitHub 庫(https://github.com/moabitcoin/ig65m-pytorch),并添加了一些功能,以使自定義模型的訓(xùn)練和評估更加用戶友好。這里在預(yù)訓(xùn)練時使用的是 IG-Kinetics 數(shù)據(jù)集。 7. 多目標(biāo)跟蹤 該目錄提供了構(gòu)建和推斷多目標(biāo)跟蹤系統(tǒng)的示例和最佳實踐,旨在使用戶能夠基于自定義數(shù)據(jù)集輕松訓(xùn)練高準(zhǔn)確率跟蹤模型。 該庫集成了 FairMOT 跟蹤算法,該算法在近期的 MOT 基準(zhǔn)測試中表現(xiàn)出了很強的跟蹤性能,同時也推理速度也很快。 8. 人群計數(shù) 該目錄提供了多個人群計數(shù)算法的 production-ready 版本,不同算法被統(tǒng)一在一組一致性 API 下。

對多個基于專用數(shù)據(jù)集的人群計數(shù)模型實現(xiàn)進行評估后,該項目將模型范圍縮小到兩個選項:Multi Column CNN model (MCNN) 和 OpenPose 模型。二者均符合速度要求。

對于高密度人群圖像,MCNN 模型取得了良好的效果;

對于低密度場景,OpenPose 表現(xiàn)良好。

而當(dāng)人群密度未知時,該項目采用啟發(fā)式方法。在滿足以下條件時使用 MCNN 進行預(yù)測:OpenPose 預(yù)測大于 20,MCNN 大于 50。反之,則使用 OpenPose 預(yù)測。模型的閾值可以根據(jù)使用者的場景進行更改。

此外,該目錄還展示了依賴項、安裝過程、測試及性能。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 微軟
    +關(guān)注

    關(guān)注

    4

    文章

    6685

    瀏覽量

    105730
  • 計算機視覺
    +關(guān)注

    關(guān)注

    9

    文章

    1708

    瀏覽量

    46770
  • 機器學(xué)習(xí)
    +關(guān)注

    關(guān)注

    66

    文章

    8501

    瀏覽量

    134580

原文標(biāo)題:PyTorch實現(xiàn),GitHub 4000星:這是微軟開源的計算機視覺庫

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    Arm KleidiCV與OpenCV集成助力移動端計算機視覺性能優(yōu)化

    等多種應(yīng)用中。然而,這些計算機視覺應(yīng)用可能很難實現(xiàn)最優(yōu)化的延遲性能和處理速度,特別是在內(nèi)存大小、電池容量和處理能力有限的移動設(shè)備上難度更高。 而 Arm KleidiCV 便能在其中大顯身手。該開源
    的頭像 發(fā)表于 02-24 10:15 ?563次閱讀

    AR和VR中的計算機視覺

    ):計算機視覺引領(lǐng)混合現(xiàn)實體驗增強現(xiàn)實(AR)和虛擬現(xiàn)實(VR)正在徹底改變我們與外部世界的互動方式。即便是在引人入勝的沉浸式
    的頭像 發(fā)表于 02-08 14:29 ?1557次閱讀
    AR和VR中的<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>

    量子計算機與普通計算機工作原理的區(qū)別

    ? 本文介紹了量子計算機與普通計算機工作原理的區(qū)別。 量子計算是一個新興的研究領(lǐng)域,科學(xué)家們利用量子力學(xué),制造出具有革命性能力的計算機。雖然現(xiàn)在的量子
    的頭像 發(fā)表于 11-24 11:00 ?1468次閱讀
    量子<b class='flag-5'>計算機</b>與普通<b class='flag-5'>計算機</b>工作原理的區(qū)別

    【小白入門必看】一文讀懂深度學(xué)習(xí)計算機視覺技術(shù)及學(xué)習(xí)路線

    一、什么是計算機視覺計算機視覺,其實就是教機器怎么像我們?nèi)艘粯樱脭z像頭看看周圍的世界,然后理解它。比如說,它能認(rèn)出這是個蘋果,或者那邊有輛車。除此之外,還能把拍到的照片或者視頻轉(zhuǎn)換
    的頭像 發(fā)表于 10-31 17:00 ?1236次閱讀
    【小白入門必看】一文讀懂深度學(xué)習(xí)<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>技術(shù)及學(xué)習(xí)路線

    計算機接口位于什么之間

    計算機接口是計算機硬件和軟件之間、計算機與外部設(shè)備之間以及計算機各部件之間傳輸數(shù)據(jù)、控制信息和狀態(tài)信息的硬件設(shè)備和軟件程序。它在計算機系統(tǒng)中
    的頭像 發(fā)表于 10-14 14:02 ?1299次閱讀

    使用Arm KleidiCV開源加速圖像處理性能

    針對 Arm CPU 優(yōu)化的性能關(guān)鍵型例程的開源。該軟件專為集成到各種計算機視覺框架而設(shè)計,能夠為 Arm 平臺上的
    的頭像 發(fā)表于 09-03 11:32 ?2594次閱讀
    使用Arm KleidiCV<b class='flag-5'>開源</b><b class='flag-5'>庫</b>加速圖像處理性能

    澎峰科技高性能計算PerfIPP介紹

    PerfIPP是專為計算機視覺處理和信號處理設(shè)計的優(yōu)化計算計算驅(qū)動層基于OpenCL標(biāo)準(zhǔn),支持異構(gòu)
    的頭像 發(fā)表于 09-02 17:39 ?650次閱讀
    澎峰科技高性能<b class='flag-5'>計算</b><b class='flag-5'>庫</b>PerfIPP介紹

    簡述計算機總線的分類

    計算機總線作為計算機系統(tǒng)中連接各個功能部件的公共通信干線,其結(jié)構(gòu)和分類對于理解計算機硬件系統(tǒng)的工作原理至關(guān)重要。以下是對計算機總線結(jié)構(gòu)和分類的詳細(xì)闡述,內(nèi)容將涵蓋總線的基本概念、內(nèi)部結(jié)
    的頭像 發(fā)表于 08-26 16:23 ?5162次閱讀

    晶體管計算機和電子管計算機有什么區(qū)別

    晶體管計算機和電子管計算機作為計算機發(fā)展史上的兩個重要階段,它們在多個方面存在顯著的區(qū)別。以下是對這兩類計算機在硬件、性能、應(yīng)用以及技術(shù)發(fā)展等方面區(qū)別的詳細(xì)闡述。
    的頭像 發(fā)表于 08-23 15:28 ?3599次閱讀

    計算機視覺有哪些優(yōu)缺點

    計算機視覺作為人工智能領(lǐng)域的一個重要分支,旨在使計算機能夠像人類一樣理解和解釋圖像和視頻中的信息。這一技術(shù)的發(fā)展不僅推動了多個行業(yè)的變革,也帶來了諸多優(yōu)勢,但同時也伴隨著一些挑戰(zhàn)和局限性。以下是對
    的頭像 發(fā)表于 08-14 09:49 ?2035次閱讀

    計算機視覺中的圖像融合

    在許多計算機視覺應(yīng)用中(例如機器人運動和醫(yī)學(xué)成像),需要將多個圖像的相關(guān)信息整合到單一圖像中。這種圖像融合可以提供更高的可靠性、準(zhǔn)確性和數(shù)據(jù)質(zhì)量。多視圖融合可以提高圖像分辨率,并恢復(fù)場景的三維表示
    的頭像 發(fā)表于 08-01 08:28 ?1140次閱讀
    <b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>中的圖像融合

    地平線科研論文入選國際計算機視覺頂會ECCV 2024

    近日,地平線兩篇論文入選國際計算機視覺頂會ECCV 2024,自動駕駛算法技術(shù)再有新突破。
    的頭像 發(fā)表于 07-27 11:10 ?1460次閱讀
    地平線科研論文入選國際<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>頂會ECCV 2024

    計算機視覺技術(shù)的AI算法模型

    計算機視覺技術(shù)作為人工智能領(lǐng)域的一個重要分支,旨在使計算機能夠像人類一樣理解和解釋圖像及視頻中的信息。為了實現(xiàn)這一目標(biāo),計算機視覺技術(shù)依賴于
    的頭像 發(fā)表于 07-24 12:46 ?1799次閱讀

    什么是機器視覺opencv?它有哪些優(yōu)勢?

    Vision Library)是一個開源計算機視覺,提供了大量的圖像處理和計算機視覺算法,
    的頭像 發(fā)表于 07-16 10:33 ?1352次閱讀

    機器視覺計算機視覺有什么區(qū)別

    機器視覺計算機視覺是兩個密切相關(guān)但又有所區(qū)別的概念。 一、定義 機器視覺 機器視覺,又稱為計算機
    的頭像 發(fā)表于 07-16 10:23 ?1162次閱讀