一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人工智能投入爭(zhēng)分奪秒的攻堅(jiān)戰(zhàn) CT影像分析演繹互聯(lián)網(wǎng)速度

454398 ? 來源:驅(qū)動(dòng)號(hào) ? 作者: Alter ? 2020-11-20 12:01 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

連心醫(yī)療團(tuán)隊(duì)基于百度飛槳平臺(tái)開發(fā)的“基于CT影像的肺炎篩查與病情預(yù)評(píng)估AI系統(tǒng)”正式上線,可快速檢測(cè)識(shí)別肺炎病灶,為病情診斷提供病灶的數(shù)量、體積、肺部占比等定量評(píng)估信息,并已經(jīng)在湖南郴州湘南學(xué)院附屬醫(yī)院投入使用。

在此之前的一段時(shí)間里,AI抗疫就已經(jīng)成為備受關(guān)注熱門話題,諸如AI紅外測(cè)溫、肺炎咨詢機(jī)器人、人工智能助力疫苗研發(fā)、算法預(yù)測(cè)新型冠狀病毒的全基因組等案例多次占據(jù)科技媒體頭條。

不過深入抗疫一線、與醫(yī)療人員并肩戰(zhàn)斗的CT影像智能識(shí)別又有所不同,從新冠肺炎“假陰性”的消息傳出,到百度飛槳助力連心醫(yī)療首次開源肺炎CT影像分析模型,從0到1乃至到N的一幕,再次演繹了互聯(lián)網(wǎng)的“戰(zhàn)疫”速度。

有感于科技企業(yè)擔(dān)當(dāng)精神的同時(shí),也產(chǎn)生了一些新的話題,比如人工智能企業(yè)為何可以快速給出解決方案,落地應(yīng)用后解決了哪些棘手問題,以及人工智能的實(shí)戰(zhàn)結(jié)果給我們帶來了什么樣的啟示?

爭(zhēng)分奪秒的AI“軍團(tuán)”

武漢大學(xué)中南醫(yī)院影像科副主任張笑春發(fā)了一條朋友圈:“別迷信核酸檢測(cè)了,強(qiáng)烈推薦CT影像作為目前 2019-nCoV 肺炎主要依據(jù)”,并稱這是“一個(gè)一線影像醫(yī)生的大聲疾呼!”

工信部發(fā)出了倡議:全國各地要充分發(fā)揮人工智能賦能效用,協(xié)力抗擊新冠肺炎疫情;2月5日,國家衛(wèi)健委發(fā)布了第五版《新型冠狀病毒感染的肺炎診療方案》,肺部CT影像被正式納入新冠肺炎診斷標(biāo)準(zhǔn)。

大大小小的人工智能企業(yè),也開始了一場(chǎng)爭(zhēng)分奪秒的攻堅(jiān)戰(zhàn)。

正如文初提到的一幕,連心醫(yī)療結(jié)合百度飛槳開源框架和視覺領(lǐng)域技術(shù)領(lǐng)先的PaddleSeg開發(fā)套件,研發(fā)了“基于CT影像的肺炎篩查與病情預(yù)評(píng)估AI系統(tǒng)”,并將對(duì)全國定點(diǎn)收治醫(yī)院免費(fèi)開放,以提高國內(nèi)基層醫(yī)院關(guān)于新型肺炎的病情診斷和救治能力。

阿里、華為、依圖科技、深睿醫(yī)療等也先后拿出了解決方案。

比如阿里達(dá)摩院醫(yī)療團(tuán)隊(duì)與浙大一附院、萬里云、長遠(yuǎn)佳和古珀醫(yī)院等多家機(jī)構(gòu)合作拿到了5000多個(gè)CT影像樣本,結(jié)合新冠肺炎患者的臨床特征,推出了新冠肺炎臨床AI診斷技術(shù)(CT影像),并在河南“小湯山”醫(yī)院里落地應(yīng)用。

華為云宣布與華中科技大學(xué)、藍(lán)網(wǎng)科技等通力協(xié)作,研發(fā)并推出新型冠狀病毒肺炎AI輔助醫(yī)學(xué)影像量化分析服務(wù),通過計(jì)算機(jī)視覺與醫(yī)學(xué)影像分析技術(shù),結(jié)合臨床信息和實(shí)驗(yàn)室結(jié)果,輔助醫(yī)生更高效、精準(zhǔn)地區(qū)分早期、進(jìn)展期與重癥期患者。

依圖科技、深睿醫(yī)療、推想科技等創(chuàng)業(yè)公司向外界釋放了推出可用于智能評(píng)估新冠肺炎的AI影像產(chǎn)品的消息,將針對(duì)局部性病灶、彌漫性病變、全肺受累的各類肺炎疾病嚴(yán)重程度進(jìn)行分級(jí),繼而精確測(cè)算出疾病累計(jì)的肺炎負(fù)荷。

做一個(gè)總結(jié)的話,人工智能企業(yè)在對(duì)抗新冠肺炎“假陰性”困境中的快速應(yīng)對(duì)和深度參與,離不開兩個(gè)關(guān)鍵因素:

其一,CT掃描一次可以得到數(shù)百張人體組織截面,而新型冠狀肺炎的在影像上主要表現(xiàn)為外帶分布、多葉段、磨玻璃間質(zhì)性改變,醫(yī)生可以將標(biāo)注好的肺部CT影像交由機(jī)器學(xué)習(xí),主動(dòng)尋找結(jié)果和圖像之間的關(guān)系。

其二,利用CT圖像數(shù)據(jù)進(jìn)行AI診斷并非沒有先例,美國國立衛(wèi)生研究院在2018年就曾公開10600張CT掃描圖像,用于醫(yī)療人工智能算法的開發(fā)和測(cè)試。同時(shí)國內(nèi)的百度、阿里、華為云等也在圖像識(shí)別領(lǐng)域有著成熟的神經(jīng)網(wǎng)絡(luò)訓(xùn)練算法。

誠然,人工智能在CT影像識(shí)別中的應(yīng)用并非是“不可能完成”的任務(wù),甚至說是當(dāng)下醫(yī)療體系的一種潛在趨勢(shì),但發(fā)揮出的價(jià)值卻不該被低估。

AI解決了哪些問題?

厘清了人工智能企業(yè)迅速備戰(zhàn)的原因,再來回答另一個(gè)問題:人工智能在這場(chǎng)攻堅(jiān)戰(zhàn)中到底解決了哪些棘手問題?

首先是時(shí)間上的對(duì)比。

以CT影像的量化評(píng)估為例,現(xiàn)在大多數(shù)醫(yī)護(hù)人員采用的是手工勾畫ROI的方法,類似于PS中的手動(dòng)描邊和摳圖,每個(gè)患者需要勾畫三四百張的CT影像,往往需要五六個(gè)小時(shí)的時(shí)間才能完成。而一位患者從入院觀察到治愈出院,一般需要拍攝四次左右的CT影像,相關(guān)醫(yī)生的工作量可想而知。

特別是在湖北等疫情高發(fā)的地區(qū),耗時(shí)如此之長的CT影像量化工作,不僅讓一線的醫(yī)療人員置于高負(fù)荷的工作狀態(tài)中,也在一定程度上耽擱了診斷效率。

從幾家人工智能企業(yè)給出的結(jié)果來看,確診時(shí)間被壓縮到了幾秒到幾十秒之間。諸如依圖科技、華為云等公司專注于CT影像量化評(píng)估工作,阿里達(dá)摩院、連心醫(yī)療則給出了一整套的方案,包括CT影像的病灶檢測(cè)、病灶輪廓勾畫、雙肺密度分布直方圖及肺部病灶的數(shù)量、體積、肺部占比等全套定量指標(biāo)的計(jì)算與展示。

其次是生產(chǎn)力的對(duì)比。

疫區(qū)的醫(yī)生或許可以憑借繁多的病例“熟能生巧”,花上5—10分鐘的時(shí)間就能從CT影像中確定患者的病情??蓪?duì)于非疫區(qū)的醫(yī)生而言,由于接診相關(guān)病歷的經(jīng)驗(yàn)少,在確診過程中經(jīng)常會(huì)舉棋不定,直到核酸檢測(cè)顯示陽性后才敢確診,其中猶豫和等待的時(shí)間,可能已經(jīng)造成交叉感染乃至是家庭聚集性發(fā)病。

同時(shí)高壓的工作狀態(tài)也在考驗(yàn)醫(yī)生的心理素質(zhì),每一份簽名確診報(bào)告的背后,通常意味著幾十個(gè)緊密接觸者的隔離收治,既是一種責(zé)任,也是心理上猶豫。

至少人工智能在CT影像診斷中的應(yīng)用,已經(jīng)在某種程度上拉平了因?yàn)榻?jīng)驗(yàn)不同導(dǎo)致的生產(chǎn)力差異,即便是沒有接觸過肺炎病例的醫(yī)生,也可以根據(jù)AI的診斷結(jié)果進(jìn)行科學(xué)判定,然后以一種可觀的依據(jù)增強(qiáng)醫(yī)生們的診斷信心。

值得一提的是,連心醫(yī)療采用的深度學(xué)習(xí)算法模型充分訓(xùn)練了所收集到的高分辨率和低分辨率的CT影像數(shù)據(jù),可以適應(yīng)不同等級(jí)CT影像設(shè)備采集的檢查數(shù)據(jù),哪怕是醫(yī)療資源受限的基層醫(yī)院,也可以在肺炎輔助預(yù)診斷工具的幫助下進(jìn)行確診,進(jìn)一步提升了基層醫(yī)生的診斷和評(píng)估效率。

被驗(yàn)證的“通用技術(shù)”

人工智能在CT影像輔助診斷中的價(jià)值已然被驗(yàn)證,同時(shí)被驗(yàn)證的還有人工智能作為“通用技術(shù)”的屬性。

按照百度CTO王海峰的觀點(diǎn),“通用技術(shù)”指的是與機(jī)械技術(shù)、電氣技術(shù)和信息技術(shù)一樣,具備標(biāo)準(zhǔn)化、自動(dòng)化和模塊化的特征,也是進(jìn)入工業(yè)大生產(chǎn)階段的基本前提。至少AI在CT圖像智能診斷系統(tǒng)的應(yīng)用中,不難找到“通用性”的一面。

一個(gè)直接的例子,當(dāng)新型冠狀肺炎的疫情結(jié)束后,那些戰(zhàn)斗在一線的醫(yī)務(wù)工作者,勢(shì)必會(huì)重新審視AI這個(gè)“新戰(zhàn)友”,進(jìn)而延伸出更加廣泛的應(yīng)用,比如同樣的技術(shù)被應(yīng)用于肝癌、肺癌等病情的早期篩查,畢竟這些病歷同樣需要在幾百張影像中找到病變的組織,并對(duì)它的良惡性做出準(zhǔn)確的判斷。

只是這樣的話題似乎并不新鮮,早在2016年就有“人工智能+醫(yī)療影像”元年的說法,圖像識(shí)別在醫(yī)療中的應(yīng)用漸漸興起,這次疫情中嶄露頭角的推想科技、連心醫(yī)療等均誕生于這一年。盡管在過去幾年中,這些企業(yè)很少被外界所關(guān)注,以至于在資本市場(chǎng)都有些寒冬的味道,但經(jīng)此一“疫”后大概率會(huì)迎來新的風(fēng)口。

何況人工智能行業(yè)的協(xié)作方式也在發(fā)生轉(zhuǎn)變,進(jìn)一步為醫(yī)療垂直領(lǐng)域的布道者們提供了新的機(jī)會(huì)窗口。

以連心醫(yī)療為例,在創(chuàng)立之初主要提供腫瘤數(shù)據(jù)平臺(tái)搭建和醫(yī)療數(shù)據(jù)分析,涉及醫(yī)療影像處理、分割、配準(zhǔn)等等。但在CT影像的攻堅(jiān)戰(zhàn)中,連心醫(yī)療選擇在自身數(shù)據(jù)優(yōu)勢(shì)的基礎(chǔ)上,基于百度飛槳平臺(tái)快速開發(fā)上線了基于CT影像的肺炎篩查與病情預(yù)評(píng)估AI系統(tǒng)并對(duì)全國定點(diǎn)收治醫(yī)院免費(fèi)開放,為抗擊疫情貢獻(xiàn)一己之力的同時(shí),也給出了醫(yī)療服務(wù)升級(jí)的新思路:

以往醫(yī)療機(jī)構(gòu)想要開發(fā)肺炎CT影像智能診斷類的應(yīng)用,需要找到某家科技公司進(jìn)行聯(lián)合開發(fā),其中的門檻和成本不言而喻。如今卻可以在百度飛槳的EasyDL圖像分割模型中,直接選擇“肺炎CT影像識(shí)別專用算法”,只需要少量的數(shù)據(jù)訓(xùn)練即可獲得基于實(shí)際場(chǎng)景進(jìn)一步優(yōu)化的模型,以及可靈活支持多種部署形式、可即用的模型服務(wù)。

沿循這樣的邏輯,不排除誕生AI應(yīng)用新范式的可能。百度飛槳就像是AI服務(wù)的“模型商店”,連心醫(yī)療這樣的開發(fā)者打造上線了各種各樣的“模型”,全球范圍內(nèi)的醫(yī)療機(jī)構(gòu)們可以在“商店”中找到自己需要的“模型”,簡單的適配就可以落地應(yīng)用。

可以篤定的是,一旦這樣的邏輯被跑通后,注定不會(huì)局限在醫(yī)療領(lǐng)域,不斷向工業(yè)制造、市場(chǎng)營銷、農(nóng)業(yè)生產(chǎn)等領(lǐng)域延伸,又一次印證了王海峰關(guān)于“深度學(xué)習(xí)推動(dòng)AI進(jìn)入工業(yè)大生產(chǎn)階段”的觀點(diǎn)。

編輯:hfy
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    35164

    瀏覽量

    279999
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122798
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    最新人工智能硬件培訓(xùn)AI 基礎(chǔ)入門學(xué)習(xí)課程參考2025版(大模型篇)

    教育等領(lǐng)域發(fā)揮著越來越重要的作用。?針對(duì)日前前來咨詢的廣大客戶對(duì)面向大模型智能硬件的學(xué)習(xí)需求,我們根據(jù)CSK6大模型語音視覺開發(fā)板已有功能,整理了一份適合基于本開發(fā)板進(jìn)行教學(xué)活動(dòng)的學(xué)習(xí)課程參考給大家備用,其中基礎(chǔ)概念大家可以通過大模型問答或互聯(lián)網(wǎng)搜索獲得。
    發(fā)表于 07-04 11:10

    研華科技亮相2025工業(yè)互聯(lián)網(wǎng)大會(huì)

    研華科技受邀出席工業(yè)互聯(lián)網(wǎng)大會(huì),研華(中國)工業(yè)物聯(lián)網(wǎng)事業(yè)群總經(jīng)理蔡奇男參與《人工智能時(shí)代,工業(yè)互聯(lián)網(wǎng)高質(zhì)量發(fā)展洞察與路徑探索》圓桌對(duì)談,共話AI與工業(yè)融合新趨勢(shì)。
    的頭像 發(fā)表于 05-23 15:27 ?445次閱讀

    互聯(lián)網(wǎng)智能制造平臺(tái)是什么

    互聯(lián)網(wǎng)智能制造平臺(tái)是基于云計(jì)算、大數(shù)據(jù)、物聯(lián)網(wǎng)、人工智能等先進(jìn)技術(shù),構(gòu)建的一個(gè)實(shí)現(xiàn)制造業(yè)智能化、數(shù)字化、網(wǎng)絡(luò)化轉(zhuǎn)型的綜合性平臺(tái)。以下是具體介
    的頭像 發(fā)表于 04-24 14:23 ?302次閱讀

    工業(yè)互聯(lián)網(wǎng)平臺(tái)在智能制造中扮演什么角色?

    互聯(lián)網(wǎng)平臺(tái)能夠?qū)崟r(shí)采集設(shè)備的運(yùn)行狀態(tài)、能耗、工藝參數(shù)等數(shù)據(jù),并高速傳輸至云端或本地服務(wù)器,為數(shù)據(jù)驅(qū)動(dòng)的決策提供基礎(chǔ)。 深度分析與處理:利用大數(shù)據(jù)分析、人工智能等技術(shù)對(duì)采集到的海量數(shù)據(jù)進(jìn)
    的頭像 發(fā)表于 04-24 14:22 ?254次閱讀

    加強(qiáng)生態(tài)環(huán)境保護(hù),堅(jiān)決打好污染防治攻堅(jiān)戰(zhàn)

    之前國家公布的《中共中央國務(wù)院關(guān)于全面加強(qiáng)生態(tài)環(huán)境保護(hù)堅(jiān)決打好污染防治攻堅(jiān)戰(zhàn)的意見》提出:堅(jiān)決打贏藍(lán)天保衛(wèi)戰(zhàn),著力打好碧水保衛(wèi)戰(zhàn),扎實(shí)推進(jìn)凈土保衛(wèi)戰(zhàn)。 到2020年三大保衛(wèi)戰(zhàn)具體指標(biāo):
    的頭像 發(fā)表于 12-25 15:30 ?433次閱讀
    加強(qiáng)生態(tài)環(huán)境保護(hù),堅(jiān)決打好污染防治<b class='flag-5'>攻堅(jiān)戰(zhàn)</b>

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】+數(shù)據(jù)在具身人工智能中的價(jià)值

    嵌入式人工智能(EAI)將人工智能集成到機(jī)器人等物理實(shí)體中,使它們能夠感知、學(xué)習(xí)環(huán)境并與之動(dòng)態(tài)交互。這種能力使此類機(jī)器人能夠在人類社會(huì)中有效地提供商品及服務(wù)。 數(shù)據(jù)是一種貨幣化工具 數(shù)據(jù)是互聯(lián)網(wǎng)
    發(fā)表于 12-24 00:33

    嵌入式和人工智能究竟是什么關(guān)系?

    了數(shù)據(jù)傳輸?shù)膲毫?,還提高了系統(tǒng)的響應(yīng)速度。而在物聯(lián)網(wǎng)中,嵌入式系統(tǒng)更是一個(gè)核心的組成部分。通過將人工智能算法應(yīng)用于物聯(lián)網(wǎng)設(shè)備,我們可以實(shí)現(xiàn)對(duì)海量數(shù)據(jù)的
    發(fā)表于 11-14 16:39

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第6章人AI與能源科學(xué)讀后感

    、優(yōu)化等方面的應(yīng)用有了更清晰的認(rèn)識(shí)。特別是書中提到的基于大數(shù)據(jù)和機(jī)器學(xué)習(xí)的能源管理系統(tǒng),通過實(shí)時(shí)監(jiān)測(cè)和分析能源數(shù)據(jù),實(shí)現(xiàn)了能源的高效利用和智能化管理。 其次,第6章通過多個(gè)案例展示了人工智能在能源科學(xué)中
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    閱讀這一章后,我深感人工智能與生命科學(xué)的結(jié)合正引領(lǐng)著一場(chǎng)前所未有的科學(xué)革命,以下是我個(gè)人的讀后感: 1. 技術(shù)革新與生命科學(xué)進(jìn)步 這一章詳細(xì)闡述了人工智能如何通過其強(qiáng)大的數(shù)據(jù)處理和分析能力,加速生命科學(xué)
    發(fā)表于 10-14 09:21

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第一章人工智能驅(qū)動(dòng)的科學(xué)創(chuàng)新學(xué)習(xí)心得

    人工智能:科學(xué)研究的加速器 第一章清晰地闡述了人工智能作為科學(xué)研究工具的強(qiáng)大功能。通過機(jī)器學(xué)習(xí)、深度學(xué)習(xí)等先進(jìn)技術(shù),AI能夠處理和分析海量數(shù)據(jù),發(fā)現(xiàn)傳統(tǒng)方法難以捕捉的模式和規(guī)律。這不僅極大地提高了數(shù)據(jù)處理
    發(fā)表于 10-14 09:12

    工業(yè)互聯(lián)網(wǎng)人工智能融合創(chuàng)新 解鎖新型工業(yè)化

    人工智能是引領(lǐng)新一輪科技革命和產(chǎn)業(yè)變革的戰(zhàn)略性技術(shù),具有溢出帶動(dòng)性很強(qiáng)的“頭雁”效應(yīng)。當(dāng)前,我國工業(yè)互聯(lián)網(wǎng)正邁入規(guī)模化發(fā)展的新階段,人工智能與工業(yè)互聯(lián)網(wǎng)深度融合,能夠大幅提高生產(chǎn)效率、
    的頭像 發(fā)表于 10-11 11:06 ?713次閱讀

    risc-v在人工智能圖像處理應(yīng)用前景分析

    RISC-V在人工智能圖像處理領(lǐng)域的應(yīng)用前景十分廣闊,這主要得益于其開源性、靈活性和低功耗等特點(diǎn)。以下是對(duì)RISC-V在人工智能圖像處理應(yīng)用前景的詳細(xì)分析: 一、RISC-V的基本特點(diǎn) RISC-V
    發(fā)表于 09-28 11:00

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析

    人工智能ai 數(shù)電 模電 模擬集成電路原理 電路分析 想問下哪些比較容易學(xué) 不過好像都是要學(xué)的
    發(fā)表于 09-26 15:24

    工業(yè)互聯(lián)網(wǎng)賦能智能制造

    工業(yè)互聯(lián)網(wǎng)(Industrial Internet)作為新一代信息技術(shù)與制造業(yè)深度融合的產(chǎn)物,已成為推動(dòng)智能制造發(fā)展的重要引擎。它將物聯(lián)網(wǎng)、大數(shù)據(jù)、人工智能等技術(shù)與傳統(tǒng)制造業(yè)深度融合,
    的頭像 發(fā)表于 08-05 17:10 ?606次閱讀

    FPGA在人工智能中的應(yīng)用有哪些?

    FPGA(現(xiàn)場(chǎng)可編程門陣列)在人工智能領(lǐng)域的應(yīng)用非常廣泛,主要體現(xiàn)在以下幾個(gè)方面: 一、深度學(xué)習(xí)加速 訓(xùn)練和推理過程加速:FPGA可以用來加速深度學(xué)習(xí)的訓(xùn)練和推理過程。由于其高并行性和低延遲特性
    發(fā)表于 07-29 17:05