一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于深度學(xué)習(xí)的傳統(tǒng)圖像增強(qiáng)算法

電子設(shè)計(jì) ? 來(lái)源:AI加速微信公眾號(hào) ? 作者:AI加速微信公眾號(hào) ? 2020-11-11 16:28 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

引言

由于受到環(huán)境,光線等的影響,拍攝的照片清晰度和對(duì)比度比較低,不能夠突出圖像中的重點(diǎn)。圖像增強(qiáng)就是通過(guò)一定手段來(lái)增強(qiáng)圖像的對(duì)比度,使得其中的人物或者事物更加明顯,有利于后邊的識(shí)別等處理。本章介紹幾個(gè)傳統(tǒng)的圖像增強(qiáng)算法,并給出matlab實(shí)現(xiàn)代碼,看一看不同算法的實(shí)現(xiàn)效果,最后再介紹一下深度學(xué)習(xí)在圖像增強(qiáng)上的應(yīng)用。

1. 直方圖均衡
在直方圖中,如果灰度級(jí)集中于高灰度區(qū)域,圖像低灰度就不容易分辨,如果灰度級(jí)集中于低灰度區(qū)域,那么高灰度就不容易分辨。為了能夠讓高低灰度都容易分辨,最好的辦法是將圖像進(jìn)行轉(zhuǎn)換,使得灰度級(jí)分布概率相同。這就是直方圖均衡的目的。假設(shè)圖像經(jīng)過(guò)如下變換:

Matlab代碼如下:
function histogramEqual

imgData=imread('../data/img0.jpg');
gray=rgb2gray(imgData);
imshow(gray);
imwrite(gray, '../data/gray0.jpg');
%calculate histogram
histgramData=linspace(0, 0, 256);
[grayRow, grayColumn]=size(gray);
grayPixelNumber=grayRow*grayColumn;
for i=1:grayRow
for j=1:grayColumn
histgramData(gray(i, j)+1)=histgramData(gray(i, j)+1)+1;
end
end

%histogram equalization
histogramIntegral=linspace(0, 0, 256);
for i=1:256
for j=1:i
histogramIntegral(i)=histogramIntegral(i)+histgramData(j);
end
end

for i=1:grayRow
for j=1:grayColumn
gray(i, j)=round(255*histogramIntegral(gray(i, j)+1)/grayPixelNumber);
end
end

imshow(gray);
imwrite(gray, '../output/histogramEqual.jpg');
end

處理結(jié)果:

圖1.1 直方圖均衡化結(jié)果(左)原圖像(右)結(jié)果

2. Gamma變換

Gamma變換主要用于圖像修正,將灰度過(guò)高或者過(guò)低的圖片進(jìn)行修正,增強(qiáng)對(duì)比度。變換公式是對(duì)每個(gè)像素進(jìn)行乘積運(yùn)算:

從下圖的gamma曲線中可以看出其變換原理:

圖2.1 圖像gamma變換

從圖中可以看出當(dāng)r值大于1,會(huì)拉伸圖像中灰度級(jí)較高的區(qū)域,壓縮灰度級(jí)較低部分;當(dāng)r值小于1時(shí),會(huì)拉伸灰度級(jí)較低部分,而壓縮灰度級(jí)較高部分。這樣來(lái)調(diào)整圖像對(duì)比度。

Matlab代碼:
function imageGamma(r)

imgData=imread('../data/img0.jpg');
gray=rgb2gray(imgData);
[grayRow, grayColumn]=size(gray);

gray=double(gray);

for i=1:grayRow
for j=1:grayColumn
gray(i, j)=255*((gray(i, j)/255)^r);
gray(i, j)=round(gray(i, j));
end
end
gray=uint8(gray);

fileName='../output/gamma';
fileSuf='.jpg';
gammaStr=num2str(r);
file=[fileName, gammaStr, fileSuf];
imshow(gray);
imwrite(gray, file);

end

結(jié)果如下:

圖2.2 gamma變換(左)r=0.5(右)r=1.5

3. Laplace變換

對(duì)圖像進(jìn)行二階微分操作可以突出圖像邊緣,增強(qiáng)細(xì)節(jié)。通常希望構(gòu)造一個(gè)同性濾波器,其對(duì)圖像方向的變化不敏感。一個(gè)最簡(jiǎn)單的同性濾波器就是laplace算子,定義為:

Matlab代碼為:

% g(x, y)=f(x, y)+c*delta2 f(x, y)

function laplace(c)

imgData=imread('../data/img0.jpg');
gray=rgb2gray(imgData);
[grayRow, grayColumn]=size(gray);

gray=double(gray);

%laplace
laplacePlate=[0, 1, 0; 1, -4, 1; 0, 1, 0];
laplaceResult=zeros(grayRow, grayColumn);
laplaceGray=zeros(grayRow, grayColumn);
laplaceGray=double(laplaceGray);
for i=1:grayRow
for j=1:grayColumn
for k=-1:1
for n=-1:1
if (i+k>=1) && (i+k=1) && (j+n grayValue=gray(i+k, j+n);
else
grayValue=0;
end
laplaceResult(i, j)=laplaceResult(i, j)+laplacePlate(k+2, n+2)*grayValue;
end
end
laplaceGray(i, j)=round(gray(i, j)+c*laplaceResult(i, j));
end
end

maxLaplaceGray=max(max(laplaceGray));
minLaplaceGray=min(min(laplaceGray));
laplaceGray=((laplaceGray-minLaplaceGray) .* 255) ./(maxLaplaceGray-minLaplaceGray);
laplaceGray=uint8(laplaceGray);
fileName='../output/laplace';
fileSuf='.jpg';
gammaStr=num2str(c);
file=[fileName, gammaStr, fileSuf];
figure('name', 'gray');
imshow(laplaceGray);
figure('name', 'laplace');
imshow(laplaceResult);
imwrite(laplaceGray, file);
imwrite(laplaceResult, '../output/laplaceResult.jpg');
end

結(jié)果為:

圖3.1 laplace算子增強(qiáng)(上左)laplace變換結(jié)果(上右)C=0.5(下)C=0.8

4. Retix算法

Retix是一種建立在光學(xué)物理特性基礎(chǔ)上的算法,假設(shè)入射光L(x, y)入射到物體上,經(jīng)過(guò)反射R(x, y),進(jìn)入到人眼的光變?yōu)椋?/p>

為了降低卷積運(yùn)算的的運(yùn)算量,我們?nèi)×?x7的高斯卷積模板。

Matlab代碼為:

function singleRetix(c)

imgData=imread('../data/img0.jpg');
gray=rgb2gray(imgData);
[grayRow, grayColumn]=size(gray);
gray=double(gray);

gaussConv=zeros(grayRow, grayColumn);
for i=1:grayRow
for j=1:grayColumn
for k=-3:3
for n=-3:3
gaussValue=two_d_gauss(k, n, c);
if (i+k>=1) && (i+k=1) && (j+n grayValue=gray(i+k, j+n);
else
grayValue=0;
end
gaussConv(i, j)=gaussConv(i, j)+grayValue*gaussValue;
end
end
end
end
gray=log(gray);
gaussConv=log(gaussConv);
reflectGray=exp(gray-gaussConv);
maxReflectGray=max(max(reflectGray));
minReflectGray=min(min(reflectGray));
reflectGray=((reflectGray-minReflectGray) .* 255) ./ (maxReflectGray-minReflectGray);
reflectGray=uint8(reflectGray);

fileName='../output/retix';
fileSuf='.jpg';
gammaStr=num2str(c);
file=[fileName, gammaStr, fileSuf];
figure('name', 'processed');
imshow(reflectGray);
imwrite(reflectGray, file);

end

function res=two_d_gauss(x, y, c)
res=(1/sqrt(2*pi*c))*(-(x^2+y^2)/c^2);
end

結(jié)果:

圖4.1 Retix結(jié)果(左)sigma=90(右)sigma=150

5. 基于深度學(xué)習(xí)的圖像增強(qiáng)

LL-NET是第一個(gè)用深度學(xué)習(xí)來(lái)增強(qiáng)圖像的方法。在其論文中使用自動(dòng)編碼器從表示學(xué)習(xí)的角度來(lái)解決低光圖像增強(qiáng)的問題,這些自動(dòng)編碼器經(jīng)過(guò)訓(xùn)練以學(xué)習(xí)低光圖像中的基礎(chǔ)信號(hào)特征并自適應(yīng)地增亮和去噪。LL-NET借鑒了SSDA網(wǎng)絡(luò)的稀疏特性,可以用來(lái)去除圖像中噪聲。運(yùn)用網(wǎng)絡(luò)的泛華能力來(lái)提供低照度下的測(cè)試圖片,讓網(wǎng)絡(luò)來(lái)學(xué)習(xí)到圖片的特征,從而降低噪聲,提高圖像對(duì)比度。

網(wǎng)絡(luò)結(jié)構(gòu)如下:

圖5.1 LL-NET網(wǎng)絡(luò)結(jié)構(gòu)

結(jié)果為:

圖5.2 結(jié)果

結(jié)論

本文介紹了四種傳統(tǒng)的圖像增強(qiáng)算法,以及一種基于深度學(xué)習(xí)的方法。

編輯:hfy

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    【高云GW5AT-LV60 開發(fā)套件試用體驗(yàn)】基于開發(fā)板進(jìn)行深度學(xué)習(xí)實(shí)踐,并盡量實(shí)現(xiàn)皮膚病理圖片的識(shí)別

    Equalization,對(duì)比度受限自適應(yīng)直方圖均衡化)是一種改進(jìn)的直方圖均衡化算法,主要用于增強(qiáng)圖像的局部對(duì)比度,同時(shí)避免傳統(tǒng)直方圖均衡化可能導(dǎo)致的過(guò)度
    發(fā)表于 06-11 22:35

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過(guò)反向傳播算法進(jìn)行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個(gè)或多個(gè)隱藏層和輸出層組成,通過(guò)逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化網(wǎng)絡(luò)的輸出誤差。 二、深度學(xué)習(xí)的定義與發(fā)展
    的頭像 發(fā)表于 02-12 15:15 ?871次閱讀

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開發(fā)生物學(xué)數(shù)據(jù)的機(jī)器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個(gè)強(qiáng)大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與深度
    的頭像 發(fā)表于 12-30 09:16 ?1198次閱讀
    <b class='flag-5'>傳統(tǒng)</b>機(jī)器<b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對(duì)計(jì)算資源的需求也在不斷增長(zhǎng)。NPU作為一種專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-15 09:19 ?1241次閱讀

    NPU在深度學(xué)習(xí)中的應(yīng)用

    設(shè)計(jì)的硬件加速器,它在深度學(xué)習(xí)中的應(yīng)用日益廣泛。 1. NPU的基本概念 NPU是一種專門針對(duì)深度學(xué)習(xí)算法優(yōu)化的處理器,它與
    的頭像 發(fā)表于 11-14 15:17 ?1936次閱讀

    主動(dòng)學(xué)習(xí)圖像分類技術(shù)中的應(yīng)用:當(dāng)前狀態(tài)與未來(lái)展望

    本文對(duì)近年來(lái)提出的主動(dòng)學(xué)習(xí)圖像分類算法進(jìn)行了詳細(xì)綜述,并根據(jù)所用樣本數(shù)據(jù)處理及模型優(yōu)化方案,將現(xiàn)有算法分為三類:基于數(shù)據(jù)增強(qiáng)
    的頭像 發(fā)表于 11-14 10:12 ?1293次閱讀
    主動(dòng)<b class='flag-5'>學(xué)習(xí)</b>在<b class='flag-5'>圖像</b>分類技術(shù)中的應(yīng)用:當(dāng)前狀態(tài)與未來(lái)展望

    基于差分卷積神經(jīng)網(wǎng)絡(luò)的低照度車牌圖像增強(qiáng)網(wǎng)絡(luò)

    結(jié)果表明,所提出的方法較傳統(tǒng)的低照度圖像增強(qiáng)方法相比,圖像客觀質(zhì)量結(jié)果峰值信噪比提升了0.47 dB。同時(shí),在仿真車牌和真實(shí)場(chǎng)景的車牌識(shí)別實(shí)驗(yàn)結(jié)果也證明了所提
    的頭像 發(fā)表于 11-11 10:29 ?800次閱讀
    基于差分卷積神經(jīng)網(wǎng)絡(luò)的低照度車牌<b class='flag-5'>圖像</b><b class='flag-5'>增強(qiáng)</b>網(wǎng)絡(luò)

    圖像算法工程師的利器——SpeedDP深度學(xué)習(xí)算法開發(fā)平臺(tái)

    隨著人工智能的興起,AI工程師特別是基于圖像算法工程師日益成為炙手可熱的香餑餑。特別是在一些行業(yè)市場(chǎng)例如工業(yè)領(lǐng)域等行業(yè)領(lǐng)域,需要根據(jù)具體場(chǎng)景對(duì)檢測(cè)識(shí)別算法進(jìn)行不斷地優(yōu)化完善,以達(dá)到更高的準(zhǔn)確率
    的頭像 發(fā)表于 11-08 01:06 ?838次閱讀
    <b class='flag-5'>圖像</b><b class='flag-5'>算法</b>工程師的利器——SpeedDP<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>開發(fā)平臺(tái)

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識(shí)別 圖像識(shí)別是
    的頭像 發(fā)表于 10-27 11:13 ?1393次閱讀

    激光雷達(dá)技術(shù)的基于深度學(xué)習(xí)的進(jìn)步

    信息。這使得激光雷達(dá)在自動(dòng)駕駛、無(wú)人機(jī)、機(jī)器人等領(lǐng)域具有廣泛的應(yīng)用前景。 二、深度學(xué)習(xí)技術(shù)的發(fā)展 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)分支,它通過(guò)模擬人
    的頭像 發(fā)表于 10-27 10:57 ?1076次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    人類的學(xué)習(xí)過(guò)程,實(shí)現(xiàn)對(duì)復(fù)雜數(shù)據(jù)的學(xué)習(xí)和識(shí)別。AI大模型則是指模型的參數(shù)數(shù)量巨大,需要龐大的計(jì)算資源來(lái)進(jìn)行訓(xùn)練和推理。深度學(xué)習(xí)算法為AI大模型
    的頭像 發(fā)表于 10-23 15:25 ?2911次閱讀

    AI大模型在圖像識(shí)別中的優(yōu)勢(shì)

    AI大模型在圖像識(shí)別中展現(xiàn)出了顯著的優(yōu)勢(shì),這些優(yōu)勢(shì)主要源于其強(qiáng)大的計(jì)算能力、深度學(xué)習(xí)算法以及大規(guī)模的數(shù)據(jù)處理能力。以下是對(duì)AI大模型在圖像識(shí)
    的頭像 發(fā)表于 10-23 15:01 ?2453次閱讀

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    并行計(jì)算的能力,可以在硬件層面并行處理大量數(shù)據(jù)。這種并行處理能力使得 FPGA 在執(zhí)行深度學(xué)習(xí)算法時(shí)速度遠(yuǎn)超傳統(tǒng)處理器,能夠提供更低的延遲和更高的吞吐量,從而加速模型訓(xùn)練和推理過(guò)程,滿
    發(fā)表于 09-27 20:53

    深度識(shí)別算法包括哪些內(nèi)容

    :CNN是深度學(xué)習(xí)中處理圖像和視頻等具有網(wǎng)格結(jié)構(gòu)數(shù)據(jù)的主要算法。它通過(guò)卷積層、池化層和全連接層等組件,實(shí)現(xiàn)對(duì)圖像特征的自動(dòng)提取和識(shí)別。 應(yīng)
    的頭像 發(fā)表于 09-10 15:28 ?847次閱讀

    基于大數(shù)據(jù)與深度學(xué)習(xí)的穿戴式運(yùn)動(dòng)心率算法

    性能的關(guān)鍵手段。然而,在復(fù)雜多變的運(yùn)動(dòng)環(huán)境中,準(zhǔn)確測(cè)量心率數(shù)據(jù)對(duì)于傳統(tǒng)算法而言具有較大的技術(shù)瓶頂。本文將探討如何運(yùn)用大數(shù)據(jù)和深度學(xué)習(xí)技術(shù)來(lái)開發(fā)創(chuàng)新的穿戴式運(yùn)動(dòng)心率算
    的頭像 發(fā)表于 09-10 08:03 ?652次閱讀
    基于大數(shù)據(jù)與<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>的穿戴式運(yùn)動(dòng)心率<b class='flag-5'>算法</b>