一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于PCB布板開始,談?wù)勅绾慰刂?EMI 輻射

電子設(shè)計(jì) ? 來(lái)源:電子設(shè)計(jì) ? 作者:電子設(shè)計(jì) ? 2020-10-30 16:17 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

解決 EMI 問(wèn)題的辦法很多,現(xiàn)代的 EMI 抑制方法包括:利用 EMI 抑制涂層、選用合適的 EMI 抑制零配件和 EMI 仿真設(shè)計(jì)等。本文從最基本的 PCB 布板出發(fā),討論 PCB 分層堆疊在控制 EMI 輻射中的作用和設(shè)計(jì)技巧。

電源匯流排
在 IC 的電源引腳附近合理地安置適當(dāng)容量的電容,可使 IC 輸出電壓的跳變來(lái)得更快。然而,問(wèn)題并非到此為止。由於電容呈有限頻率響應(yīng)的特性,這使得電容無(wú)法在全頻帶上生成干凈地驅(qū)動(dòng) IC 輸出所需要的諧波功率。除此之外,電源匯流排上形成的瞬態(tài)電壓在去耦路徑的電感兩端會(huì)形成電壓降,這些瞬態(tài)電壓就是主要的共模 EMI 干擾源。我們應(yīng)該怎么解決這些問(wèn)題?

就我們電路板上的 IC 而言,IC 周圍的電源層可以看成是優(yōu)良的高頻電容器,它可以收集為干凈輸出提供高頻能量的分立電容器所泄漏的那部份能量。此外,優(yōu)良的電源層的電感要小,從而電感所合成的瞬態(tài)信號(hào)也小,進(jìn)而降低共模 EMI。


當(dāng)然,電源層到 IC 電源引腳的連線必須盡可能短,因?yàn)閿?shù)位信號(hào)的上升沿越來(lái)越快,最好是直接連到 IC 電源引腳所在的焊盤上,這要另外討論。

為了控制共模 EMI,電源層要有助於去耦和具有足夠低的電感,這個(gè)電源層必須是一個(gè)設(shè)計(jì)相當(dāng)好的電源層的配對(duì)。有人可能會(huì)問(wèn),好到什么程度才算好?問(wèn)題的答案取決於電源的分層、層間的材料以及工作頻率(即 IC 上升時(shí)間的函數(shù))。通常,電源分層的間距是 6mil,夾層是 FR4 材料,則每平方英寸電源層的等效電容約為 75pF。顯然,層間距越小電容越大。

上升時(shí)間為 100 到 300ps 的器件并不多,但是按照目前 IC 的發(fā)展速度,上升時(shí)間在 100 到 300ps 范圍的器件將占有很高的比例。對(duì)於 100 到 300ps 上升時(shí)間的電路,3mil 層間距對(duì)大多數(shù)應(yīng)用將不再適用。那時(shí),有必要采用層間距小於 1mil 的分層技術(shù),并用介電常數(shù)很高的材料代替 FR4 介電材料?,F(xiàn)在,陶瓷和加陶塑料可以滿足 100 到 300ps 上升時(shí)間電路的設(shè)計(jì)要求。

盡管未來(lái)可能會(huì)采用新材料和新方法,但對(duì)於今天常見(jiàn)的 1 到 3ns 上升時(shí)間電路、3 到 6mil 層間距和 FR4 介電材料,通常足夠處理高端諧波并使瞬態(tài)信號(hào)足夠低,就是說(shuō),共模 EMI 可以降得很低。本文給出的 PCB 分層堆疊設(shè)計(jì)實(shí)例將假定層間距為 3 到 6mil。

電磁屏蔽
從信號(hào)走線來(lái)看,好的分層策略應(yīng)該是把所有的信號(hào)走線放在一層或若干層,這些層緊挨著電源層或接地層。對(duì)於電源,好的分層策略應(yīng)該是電源層與接地層相鄰,且電源層與接地層的距離盡可能小,這就是我們所講的“分層"策略。

PCB 堆疊
什么樣的堆疊策略有助於屏蔽和抑制 EMI?以下分層堆疊方案假定電源電流在單一層上流動(dòng),單電壓或多電壓分布在同一層的不同部份。多電源層的情形稍后討論。

4 層板

4 層板設(shè)計(jì)存在若干潛在問(wèn)題。首先,傳統(tǒng)的厚度為 62mil 的四層板,即使信號(hào)層在外層,電源和接地層在內(nèi)層,電源層與接地層的間距仍然過(guò)大。

如果成本要求是第一位的,可以考慮以下兩種傳統(tǒng) 4 層板的替代方案。這兩個(gè)方案都能改善 EMI 抑制的性能,但只適用於板上元件密度足夠低和元件周圍有足夠面積(放置所要求的電源覆銅層)的場(chǎng)合。

第一種為首選方案,PCB 的外層均為地層,中間兩層均為信號(hào) / 電源層。信號(hào)層上的電源用寬線走線,這可使電源電流的路徑阻抗低,且信號(hào)微帶路徑的阻抗也低。從 EMI 控制的角度看,這是現(xiàn)有的最佳 4 層 PCB 結(jié)構(gòu)。第二種方案的外層走電源和地,中間兩層走信號(hào)。該方案相對(duì)傳統(tǒng) 4 層板來(lái)說(shuō),改進(jìn)要小一些,層間阻抗和傳統(tǒng)的 4 層板一樣欠佳。

如果要控制走線阻抗,上述堆疊方案都要非常小心地將走線布置在電源和接地鋪銅島的下邊。另外,電源或地層上的鋪銅島之間應(yīng)盡可能地互連在一起,以確保 DC 和低頻的連接性。

6 層板

如果 4 層板上的元件密度比較大,則最好采用 6 層板。但是,6 層板設(shè)計(jì)中某些疊層方案對(duì)電磁場(chǎng)的屏蔽作用不夠好,對(duì)電源匯流排瞬態(tài)信號(hào)的降低作用甚微。下面討論兩個(gè)實(shí)例。

第一例將電源和地分別放在第 2 和第 5 層,由於電源覆銅阻抗高,對(duì)控制共模 EMI 輻射非常不利。不過(guò),從信號(hào)的阻抗控制觀點(diǎn)來(lái)看,這一方法卻是非常正確的。

第二例將電源和地分別放在第 3 和第 4 層,這一設(shè)計(jì)解決了電源覆銅阻抗問(wèn)題,由於第 1 層和第 6 層的電磁屏蔽性能差,差模 EMI 增加了。如果兩個(gè)外層上的信號(hào)線數(shù)量最少,走線長(zhǎng)度很短(短於信號(hào)最高諧波波長(zhǎng)的 1/20),則這種設(shè)計(jì)可以解決差模 EMI 問(wèn)題。將外層上的無(wú)元件和無(wú)走線區(qū)域鋪銅填充并將覆銅區(qū)接地(每 1/20 波長(zhǎng)為間隔),則對(duì)差模 EMI 的抑制特別好。如前所述,要將鋪銅區(qū)與內(nèi)部接地層多點(diǎn)相聯(lián)。

通用高性能 6 層板設(shè)計(jì)一般將第 1 和第 6 層布為地層,第 3 和第 4 層走電源和地。由於在電源層和接地層之間是兩層居中的雙微帶信號(hào)線層,因而 EMI 抑制能力是優(yōu)異的。該設(shè)計(jì)的缺點(diǎn)在於走線層只有兩層。前面介紹過(guò),如果外層走線短且在無(wú)走線區(qū)域鋪銅,則用傳統(tǒng)的 6 層板也可以實(shí)現(xiàn)相同的堆疊。

另一種 6 層板布局為信號(hào)、地、信號(hào)、電源、地、信號(hào),這可實(shí)現(xiàn)高級(jí)信號(hào)完整性設(shè)計(jì)所需要的環(huán)境。信號(hào)層與接地層相鄰,電源層和接地層配對(duì)。顯然,不足之處是層的堆疊不平衡。

這通常會(huì)給加工制造帶來(lái)麻煩。解決問(wèn)題的辦法是將第 3 層所有的空白區(qū)域填銅,填銅后如果第 3 層的覆銅密度接近於電源層或接地層,這塊板可以不嚴(yán)格地算作是結(jié)構(gòu)平衡的電路板。填銅區(qū)必須接電源或接地。連接過(guò)孔之間的距離仍然是 1/20 波長(zhǎng),不見(jiàn)得處處都要連接,但理想情況下應(yīng)該連接。

10 層板

由於多層板之間的絕緣隔離層非常薄,所以 10 或 12 層的電路板層與層之間的阻抗非常低,只要分層和堆疊不出問(wèn)題,完全可望得到優(yōu)異的信號(hào)完整性。要按 62mil 厚度加工制造 12 層板,困難比較多,能夠加工 12 層板的制造商也不多。

由於信號(hào)層和回路層之間總是隔有絕緣層,在 10 層板設(shè)計(jì)中分配中間 6 層來(lái)走信號(hào)線的方案并非最佳。另外,讓信號(hào)層與回路層相鄰很重要,即板布局為信號(hào)、地、信號(hào)、信號(hào)、電源、地、信號(hào)、信號(hào)、地、信號(hào)。

這一設(shè)計(jì)為信號(hào)電流及其回路電流提供了良好的通路。恰當(dāng)?shù)牟季€策略是,第 1 層沿 X 方向走線,第 3 層沿 Y 方向走線,第 4 層沿 X 方向走線,以此類推。直觀地看走線,第 1 層 1 和第 3 層是一對(duì)分層組合,第 4 層和第 7 層是一對(duì)分層組合,第 8 層和第 10 層是最后一對(duì)分層組合。當(dāng)需要改變走線方向時(shí),第 1 層上的信號(hào)線應(yīng)藉由“過(guò)孔"到第 3 層以后再改變方向。實(shí)際上,也許并不總能這樣做,但作為設(shè)計(jì)概念還是要盡量遵守。

同樣,當(dāng)信號(hào)的走線方向變化時(shí),應(yīng)該藉由過(guò)孔從第 8 層和第 10 層或從第 4 層到第 7 層。這樣布線可確保信號(hào)的前向通路和回路之間的耦合最緊。例如,如果信號(hào)在第 1 層上走線,回路在第 2 層且只在第 2 層上走線,那么第 1 層上的信號(hào)即使是藉由“過(guò)孔"轉(zhuǎn)到了第 3 層上,其回路仍在第 2 層,從而保持低電感、大電容的特性以及良好的電磁屏蔽性能。

如果實(shí)際走線不是這樣,怎么辦?比如第 1 層上的信號(hào)線經(jīng)由過(guò)孔到第 10 層,這時(shí)回路信號(hào)只好從第 9 層尋找接地平面,回路電流要找到最近的接地過(guò)孔(如電阻或電容等元件的接地引腳)。如果碰巧附近存在這樣的過(guò)孔,則真的走運(yùn)。假如沒(méi)有這樣近的過(guò)孔可用,電感就會(huì)變大,電容要減小,EMI 一定會(huì)增加。

當(dāng)信號(hào)線必須經(jīng)由過(guò)孔離開現(xiàn)在的一對(duì)布線層到其他布線層時(shí),應(yīng)就近在過(guò)孔旁放置接地過(guò)孔,這樣可以使回路信號(hào)順利返回恰當(dāng)?shù)慕拥貙印?duì)於第 4 層和第 7 層分層組合,信號(hào)回路將從電源層或接地層(即第 5 層或第 6 層)返回,因?yàn)殡娫磳雍徒拥貙又g的電容耦合良好,信號(hào)容易傳輸。

多電源層的設(shè)計(jì)
如果同一電壓源的兩個(gè)電源層需要輸出大電流,則電路板應(yīng)布成兩組電源層和接地層。在這種情況下,每對(duì)電源層和接地層之間都放置了絕緣層。這樣就得到我們期望的等分電流的兩對(duì)阻抗相等的電源匯流排。如果電源層的堆疊造成阻抗不相等,則分流就不均勻,瞬態(tài)電壓將大得多,并且 EMI 會(huì)急劇增加。

如果電路板上存在多個(gè)數(shù)值不同的電源電壓,則相應(yīng)地需要多個(gè)電源層,要牢記為不同的電源創(chuàng)建各自配對(duì)的電源層和接地層。在上述兩種情況下,確定配對(duì)電源層和接地層在電路板的位置時(shí),切記制造商對(duì)平衡結(jié)構(gòu)的要求。

總結(jié)
鑒於大多數(shù)工程師設(shè)計(jì)的電路板是厚度 62mil、不帶盲孔或埋孔的傳統(tǒng)印制電路板,本文關(guān)於電路板分層和堆疊的討論都局限於此。厚度差別太大的電路板,本文推薦的分層方案可能不理想。此外,帶盲孔或埋孔的電路板的加工制程不同,本文的分層方法也不適用。

電路板設(shè)計(jì)中厚度、過(guò)孔制程和電路板的層數(shù)不是解決問(wèn)題的關(guān)鍵,優(yōu)良的分層堆疊是保證電源匯流排的旁路和去耦、使電源層或接地層上的瞬態(tài)電壓最小并將信號(hào)和電源的電磁場(chǎng)屏蔽起來(lái)的關(guān)鍵。理想情況下,信號(hào)走線層與其回路接地層之間應(yīng)該有一個(gè)絕緣隔離層,配對(duì)的層間距(或一對(duì)以上)應(yīng)該越小越好。根據(jù)這些基本概念和原則,才能設(shè)計(jì)出總能達(dá)到設(shè)計(jì)要求的電路板?,F(xiàn)在,IC 的上升時(shí)間已經(jīng)很短并將更短,本文討論的技術(shù)對(duì)解決 EMI 屏蔽問(wèn)題是必不可少的。

審核編輯 黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • pcb
    pcb
    +關(guān)注

    關(guān)注

    4369

    文章

    23497

    瀏覽量

    409975
  • emi
    emi
    +關(guān)注

    關(guān)注

    53

    文章

    3755

    瀏覽量

    131257
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    開關(guān)電源PCB技術(shù)

    涉及到開關(guān)電源的PCB設(shè)計(jì)規(guī)范和開關(guān)電源PCB技術(shù)。 還有電腦電源PCB設(shè)計(jì)、抄經(jīng)驗(yàn)。
    發(fā)表于 05-07 17:08

    DCDC BUCK通過(guò)加RC Snubber解決EMI輻射超標(biāo)的仿真和實(shí)測(cè)數(shù)據(jù)分析

    )和EMS(Electromagnetic Susceptibility,電磁耐受性)兩種。 EMI電磁干擾是指電子設(shè)備在工作中產(chǎn)生的干擾,可以通過(guò)傳導(dǎo)和輻射對(duì)設(shè)備的其它部分或者外部的其它設(shè)備造成干擾
    發(fā)表于 04-27 15:44

    EMI(干擾)和EMS(抗擾)基礎(chǔ)知識(shí)與整改流程

    ),傳導(dǎo)噪聲CE是指經(jīng)由線體或PCB布線傳導(dǎo)的噪聲,輻射噪聲RE是指排放(輻射)到環(huán)境中的噪聲。EMS主要測(cè)試項(xiàng):ESD(產(chǎn)品靜電)、EFT(瞬態(tài)脈沖干擾)、DIP(電壓跌落)、CS
    發(fā)表于 03-28 13:28

    開關(guān)電源PCBEMI抑制與抗干擾設(shè)計(jì)

    開關(guān)電源PCBEMI抑制與抗干擾設(shè)計(jì) 引言 印制電路(PCB)是電子產(chǎn)品的重要部件之一, 是電子元器件的支撐體,是電子元器件電氣連接的
    的頭像 發(fā)表于 01-17 10:35 ?3622次閱讀
    開關(guān)電源<b class='flag-5'>PCB</b><b class='flag-5'>板</b>的<b class='flag-5'>EMI</b>抑制與抗干擾設(shè)計(jì)

    非常詳細(xì)的BUCK電路 PCB layout建議

    不穩(wěn)定、EMI輻射增加、輸出噪聲增加等,更嚴(yán)重的可能會(huì)直接造成芯片損壞。一般DC-DC芯片的使用手冊(cè)中都會(huì)有其對(duì)應(yīng)的PCB設(shè)計(jì)要求以及
    的頭像 發(fā)表于 01-17 10:03 ?1207次閱讀
    非常詳細(xì)的BUCK電路 <b class='flag-5'>PCB</b> layout建議

    談?wù)?/b>PCB工程師金字塔分級(jí)標(biāo)準(zhǔn)

    印刷電路(PCB)工程師是電子行業(yè)中至關(guān)重要的角色,他們的工作直接關(guān)系到電子產(chǎn)品的質(zhì)量和性能。為了明確不同PCB工程師的技能水平和職責(zé)范圍,行業(yè)內(nèi)形成了金字塔分級(jí)標(biāo)準(zhǔn)。下面將談?wù)?/b>這個(gè)
    的頭像 發(fā)表于 12-25 10:02 ?946次閱讀

    電磁干擾與電磁輻射的區(qū)別 EMI電磁干擾與電力系統(tǒng)的關(guān)系

    在現(xiàn)代生活中,電磁技術(shù)的應(yīng)用無(wú)處不在,從家用電器到復(fù)雜的工業(yè)控制系統(tǒng),再到通信網(wǎng)絡(luò),電磁波在其中扮演著至關(guān)重要的角色。然而,這些技術(shù)也帶來(lái)了電磁干擾(EMI)和電磁輻射的問(wèn)題。 一、電磁干擾(
    的頭像 發(fā)表于 11-20 14:51 ?1290次閱讀

    PCBEMC/EMI的設(shè)計(jì)技巧

    問(wèn)題,是使系統(tǒng)設(shè)備達(dá)到電磁兼容標(biāo)準(zhǔn)最有效、成本最低的手段。本文介紹數(shù)字電路 PCB 設(shè)計(jì)中的 EMI 控制技術(shù)。
    發(fā)表于 11-18 15:02 ?6次下載

    PCB電路的層數(shù)對(duì)性能的影響

    PCB的層數(shù)對(duì)電路的性能有著顯著的影響。以下是幾個(gè)主要方面: 1. 信號(hào)傳輸速度和電磁干擾(EMI) 更高的信號(hào)傳輸速度:多層PCB可以通過(guò)更復(fù)雜的內(nèi)部布線來(lái)提供更高的信號(hào)傳輸速度。
    的頭像 發(fā)表于 11-05 09:58 ?1227次閱讀

    基于TPS62933的CISPR-22傳導(dǎo)與輻射EMI測(cè)試

    電子發(fā)燒友網(wǎng)站提供《基于TPS62933的CISPR-22傳導(dǎo)與輻射EMI測(cè)試.pdf》資料免費(fèi)下載
    發(fā)表于 09-27 11:02 ?0次下載
    基于TPS62933的CISPR-22傳導(dǎo)與<b class='flag-5'>輻射</b><b class='flag-5'>EMI</b>測(cè)試

    衰減 AMC3301 系列輻射發(fā)射 EMI 的最佳實(shí)踐

    電子發(fā)燒友網(wǎng)站提供《衰減 AMC3301 系列輻射發(fā)射 EMI 的最佳實(shí)踐.pdf》資料免費(fèi)下載
    發(fā)表于 09-11 09:59 ?0次下載
    衰減 AMC3301 系列<b class='flag-5'>輻射</b>發(fā)射 <b class='flag-5'>EMI</b> 的最佳實(shí)踐

    降低直流/直流降壓/升壓轉(zhuǎn)換器輻射EMI的層設(shè)計(jì)

    電子發(fā)燒友網(wǎng)站提供《降低直流/直流降壓/升壓轉(zhuǎn)換器輻射EMI的層設(shè)計(jì).pdf》資料免費(fèi)下載
    發(fā)表于 09-04 10:04 ?0次下載
    降低直流/直流降壓/升壓轉(zhuǎn)換器<b class='flag-5'>輻射</b><b class='flag-5'>EMI</b>的層設(shè)計(jì)

    收藏這篇,輕松拿捏電磁干擾EMI

    是通過(guò)電纜布線、PCB布線、寄生元件或電源和接地層生成的一種傳導(dǎo)耦合。輻射EMI是無(wú)線電因?qū)щ姴馁|(zhì)元件而發(fā)出的不必要信號(hào)的耦合。每個(gè)導(dǎo)體都具有能夠傳輸和接收信號(hào)的天線
    的頭像 發(fā)表于 08-30 12:16 ?1920次閱讀
    收藏這篇,輕松拿捏電磁干擾<b class='flag-5'>EMI</b>

    EMI/RFI電路設(shè)計(jì)

    電子發(fā)燒友網(wǎng)站提供《EMI/RFI電路設(shè)計(jì).pdf》資料免費(fèi)下載
    發(fā)表于 08-26 11:41 ?0次下載
    <b class='flag-5'>EMI</b>/RFI電路<b class='flag-5'>板</b>設(shè)計(jì)

    UV三防漆應(yīng)用之空調(diào)PCB控制板

    在空調(diào)的運(yùn)作中,PCB控制板作為整個(gè)系統(tǒng)的中樞,它的穩(wěn)定性和可靠性至關(guān)重要。而環(huán)境因素的侵?jǐn)_,如濕度、塵埃和腐蝕性物質(zhì),常常威脅著PCB控制板的健康。為了應(yīng)對(duì)這些挑戰(zhàn),UV三防漆成為了
    的頭像 發(fā)表于 07-23 16:41 ?697次閱讀