一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

清華大學(xué)聯(lián)合提出了用于半監(jiān)督學(xué)習(xí)的圖隨機神經(jīng)網(wǎng)絡(luò)

ss ? 來源:學(xué)術(shù)頭條 ? 作者:學(xué)術(shù)頭條 ? 2020-12-01 15:25 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

導(dǎo)讀:在 NeurIPS 2020 上,清華大學(xué)聯(lián)合微眾銀行、微軟研究院以及博世人工智能中心提出了 Graph Random Neural Network (GRAND),一種用于圖半監(jiān)督學(xué)習(xí)的新型圖神經(jīng)網(wǎng)絡(luò)框架。在模型架構(gòu)上,GRAND 提出了一種簡單有效的圖數(shù)據(jù)增強方法 Random Propagation,用來增強模型魯棒性及減輕過平滑。基于 Random Propagation,GRAND 在優(yōu)化過程中使用一致性正則(Consistency Regularization)來增強模型的泛化性,即除了優(yōu)化標簽節(jié)點的 cross-entropy loss 之外,還會優(yōu)化模型在無標簽節(jié)點的多次數(shù)據(jù)增強的預(yù)測一致性。GRAND 不僅在理論上有良好的解釋,還在三個公開數(shù)據(jù)集上超越了 14 種不同的 GNN 模型,取得了 SOTA 的效果。

這項研究被收入為 NeurIPS 2020 的 Oral paper (105/9454)。

論文名稱:GraphRandom Neural Network for Semi-Supervised Learning on Graphs

研究背景

圖是用于建模結(jié)構(gòu)化和關(guān)系數(shù)據(jù)的一種通用的數(shù)據(jù)結(jié)構(gòu)。在這項工作中,我們重點研究基于圖的半監(jiān)督學(xué)習(xí)問題,這個問題的輸入是一個節(jié)點帶屬性的無向圖,其中只有一小部分節(jié)點有標簽,我們的目的是要根據(jù)節(jié)點屬性,圖的結(jié)構(gòu)去預(yù)測無標簽節(jié)點的標簽。近幾年來,解決這個問題一類有效的方法是以圖卷積神經(jīng)網(wǎng)絡(luò)(GCN)[1]為代表的圖神經(jīng)網(wǎng)絡(luò)模型(GNN)。其主要思想是通過一個確定性的特征傳播來聚合鄰居節(jié)點的信息,以此來達到對特征降噪的目的。

但是,最近的研究表明,這種傳播過程會帶來一些固有的問題,例如:

1) 過平滑,圖卷積可以看做是一種特殊形式的拉普拉斯平滑,疊加多層之后節(jié)點之間的feature就會變得不可區(qū)分。

2)欠魯棒,GNN中的特征傳播會使得節(jié)點的預(yù)測嚴重依賴于特定的鄰居節(jié)點,這樣的模型對噪音的容忍度會很差,例如KDD’18的best paper[2]就表明我們甚至可以通過間接攻擊的方式通過改變目標節(jié)點鄰居的屬性來達到攻擊目標節(jié)點的目的。

3)過擬合,在半監(jiān)督節(jié)點分類的任務(wù)中,有標簽的節(jié)點很少,而一般GNN僅僅依靠這些少量的監(jiān)督信息做訓(xùn)練,這樣訓(xùn)練出來的模型泛化能力會比較差。

模型介紹

為了解決這些問題,在這個工作中我們提出了圖隨機神經(jīng)網(wǎng)絡(luò)(GRAND),一種簡單有效的圖半監(jiān)督學(xué)習(xí)方法。與傳統(tǒng)GNN不同,GRAND采用隨機傳播(Random Propagation)策略。具體來說,我們首先隨機丟棄一些節(jié)點的屬性對節(jié)點特征做一個隨機擾動,然后對擾動后的節(jié)點特征做一個高階傳播。這樣一來,每個節(jié)點的特征就會隨機地與其高階鄰居的特征進交互,這種策略會降低節(jié)點對某些特定節(jié)點的依賴,提升模型的魯棒性。

除此之外,在同質(zhì)圖中,相鄰的節(jié)點往往具有相似的特征及標簽,這樣節(jié)點丟棄的信息就可以被其鄰居的信息補償過來。因此這樣形成的節(jié)點特征就可以看成是一種針對圖數(shù)據(jù)的數(shù)據(jù)增強方法?;谶@種傳播方法,我們進而設(shè)計了基于一致性正則(consistency regularization)的訓(xùn)練方法,即每次訓(xùn)練時進行多次Random Propagation 生成多個不同的節(jié)點增強表示,然后將這些增強表示輸入到一個MLP中,除了優(yōu)化交叉熵損失之外,我們還會去優(yōu)化MLP模型對多個數(shù)據(jù)增強產(chǎn)生預(yù)測結(jié)果的一致性。這種一致性正則損失無需標簽,可以使模型利用充足的無標簽數(shù)據(jù),以彌補半監(jiān)督任務(wù)中監(jiān)督信息少的不足,提升模型的泛化能力,減小過擬合的風(fēng)險。

圖一

圖二

我們對GRAND進行了理論分析,分析結(jié)果表明,這種Random propagation + Consistency Regularization 的訓(xùn)練方式實際上是在優(yōu)化模型對節(jié)點與其鄰居節(jié)點預(yù)測置信度之間的一致性。

實驗結(jié)果

我們在GNN基準數(shù)據(jù)集中的實驗結(jié)果對GRAND進行了評測,實驗結(jié)果顯示GRAND在3個公開數(shù)據(jù)集中顯著超越了14種不同種類的GNN模型,取得了SOTA的效果。實驗結(jié)果(圖三):

圖三

此外我們還對模型泛化性,魯棒性,過平滑等問題進行了分析,實驗結(jié)果顯示1)Consistency Regularization 和Random Propagation均能提升模型的泛化能力(圖四);2)GRAND具有更好的對抗魯棒性(圖五);3)GRAND可以減輕過平滑問題(圖六)。

圖四

圖五

圖六

責(zé)任編輯:xj

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)在電機故障診斷中的應(yīng)用

    摘要:針對傳統(tǒng)專家系統(tǒng)不能進行自學(xué)習(xí)、自適應(yīng)的問題,本文提出了基于種經(jīng)網(wǎng)絡(luò)專家系統(tǒng)的并步電機故障診斷方法。本文將小波神經(jīng)網(wǎng)絡(luò)和專家系統(tǒng)相結(jié)合,充分發(fā)揮了二者故障診斷的優(yōu)點,很大程度上降
    發(fā)表于 06-16 22:09

    使用MATLAB進行無監(jiān)督學(xué)習(xí)

    監(jiān)督學(xué)習(xí)是一種根據(jù)未標注數(shù)據(jù)進行推斷的機器學(xué)習(xí)方法。無監(jiān)督學(xué)習(xí)旨在識別數(shù)據(jù)中隱藏的模式和關(guān)系,無需任何監(jiān)督或關(guān)于結(jié)果的先驗知識。
    的頭像 發(fā)表于 05-16 14:48 ?700次閱讀
    使用MATLAB進行無<b class='flag-5'>監(jiān)督學(xué)習(xí)</b>

    清華大學(xué)攜手華為打造業(yè)內(nèi)首個園區(qū)網(wǎng)絡(luò)智能體

    清華大學(xué)響應(yīng)國家教育新基建戰(zhàn)略,正在加速推進網(wǎng)絡(luò)管理平臺升級:為滿足在線教育、協(xié)同創(chuàng)新及智慧校園的發(fā)展需求,為清華大學(xué)躋身世界一流大學(xué)創(chuàng)造基礎(chǔ)條件,
    的頭像 發(fā)表于 05-07 09:51 ?341次閱讀

    2025年開放原子校源行清華大學(xué)站成功舉辦

    近日,由開放原子開源基金會、清華大學(xué)計算機科學(xué)與技術(shù)系、清華大學(xué)軟件學(xué)院主辦的開放原子“校源行”(清華站)在清華大學(xué)成功舉辦。
    的頭像 發(fā)表于 04-22 16:46 ?409次閱讀

    清華大學(xué)與華為啟動“卓越中心”專項合作

    近日,清華大學(xué)與華為技術(shù)有限公司在清華大學(xué)自強科技樓正式簽署合作協(xié)議,共同宣布“清華大學(xué)鯤鵬昇騰科教創(chuàng)新卓越中心專項合作”(簡稱“卓越中心”)正式啟動。 出席簽約儀式的有清華大學(xué)副校長
    的頭像 發(fā)表于 02-18 14:11 ?732次閱讀

    如何優(yōu)化BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)

    優(yōu)化BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)率是提高模型訓(xùn)練效率和性能的關(guān)鍵步驟。以下是一些優(yōu)化BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)率的方法: 一、理解學(xué)習(xí)率的重要性
    的頭像 發(fā)表于 02-12 15:51 ?948次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Ba
    的頭像 發(fā)表于 02-12 15:15 ?871次閱讀

    深度學(xué)習(xí)入門:簡單神經(jīng)網(wǎng)絡(luò)的構(gòu)建與實現(xiàn)

    深度學(xué)習(xí)中,神經(jīng)網(wǎng)絡(luò)是核心模型。今天我們用 Python 和 NumPy 構(gòu)建一個簡單的神經(jīng)網(wǎng)絡(luò)。 神經(jīng)網(wǎng)絡(luò)由多個神經(jīng)元組成,
    的頭像 發(fā)表于 01-23 13:52 ?536次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?1218次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    清華大學(xué)師生到訪智行者科技交流學(xué)習(xí)

    近日,清華大學(xué) “技術(shù)創(chuàng)新原理與實踐” 研究生課程師生一行到訪智行者進行交流學(xué)習(xí)。作為課程實踐環(huán)節(jié)的重要一站,此次來訪開啟了一場深度的參觀學(xué)習(xí)之旅。智行者董事長&CEO張德兆先生作為清華
    的頭像 發(fā)表于 12-23 11:39 ?744次閱讀

    博世與清華大學(xué)續(xù)簽人工智能研究合作協(xié)議

    近日,博世與清華大學(xué)宣布,雙方續(xù)簽人工智能領(lǐng)域的研究合作協(xié)議,為期五年。在此期間,博世將投入5000萬元人民幣?;?020年成立的清華大學(xué)—博世機器學(xué)習(xí)聯(lián)合研究中心(以下簡稱“
    的頭像 發(fā)表于 11-20 11:37 ?764次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常
    的頭像 發(fā)表于 11-15 14:53 ?1887次閱讀

    SynSense時識科技與海南大學(xué)聯(lián)合研究成果發(fā)布

    近日,SynSense時識科技與海南大學(xué)聯(lián)合在影響因子高達7.7的國際知名期刊《Computers in Biology and Medicine》上發(fā)表了最新研究成果,展示了如何用低維信號通用類腦
    的頭像 發(fā)表于 10-23 14:40 ?877次閱讀
    SynSense時識科技與海南<b class='flag-5'>大學(xué)聯(lián)合</b>研究成果發(fā)布

    字節(jié)跳動與清華AIR成立聯(lián)合研究中心

    近日,清華大學(xué)智能產(chǎn)業(yè)研究院(AIR)與字節(jié)跳動共同宣布成立“可擴展大模型智能技術(shù)聯(lián)合研究中心”(SIA Lab),并在清華大學(xué)舉行了隆重的成立儀式。
    的頭像 發(fā)表于 10-12 15:24 ?816次閱讀

    【《大語言模型應(yīng)用指南》閱讀體驗】+ 基礎(chǔ)篇

    章節(jié)最后總結(jié)了機器學(xué)習(xí)的分類:有監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)、監(jiān)督學(xué)習(xí)、自監(jiān)督學(xué)習(xí)和強化
    發(fā)表于 07-25 14:33