一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

GitHub nanodet開源移動端實時的Anchor-free檢測模型,上線僅兩天Star量已經(jīng)超過200

智能感知與物聯(lián)網(wǎng)技術(shù)研究所 ? 來源:通信信號處理研究所 ? 作者:通信信號處理研究 ? 2020-12-03 16:06 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

目標(biāo)檢測一直是計算機視覺領(lǐng)域的一大難題,其目標(biāo)是找出圖像中的所有感興趣區(qū)域,并確定這些區(qū)域的位置和類別。目標(biāo)檢測中的深度學(xué)習(xí)方法已經(jīng)發(fā)展了很多年,并出現(xiàn)了不同類型的檢測方法。 目前,深度學(xué)習(xí)目標(biāo)檢測方法主要分為兩大類,分別是兩階段式和單階段式目標(biāo)檢測算法。兩階段式目標(biāo)檢測框架首先生成候選區(qū)域,然后將其分類成不同的目標(biāo)類別,代表模型有 R-CNN、Fast R-CNN 等;單階段式目標(biāo)檢測框架將目標(biāo)檢測任務(wù)視為一個統(tǒng)一的端到端回歸問題,代表模型有 MultiBox、YOLO、SSD 等。這類框架通常結(jié)構(gòu)更簡單,檢測速度也更快。 深度學(xué)習(xí)目標(biāo)檢測方法還可劃分為 Anchor-base 和 Anchor-free 兩大類,今年又出現(xiàn)了將 Transformer 用于目標(biāo)檢測的嘗試,各種方法百花齊放。但是,在移動端目標(biāo)檢測算法上,YOLO 系列和 SSD 等 Anchor-base 的模型一直占據(jù)主導(dǎo)地位。

近日,GitHub 上出現(xiàn)了一個項目 nanodet,它開源了一個移動端實時的 Anchor-free 檢測模型,希望能夠提供不亞于 YOLO 系列的性能,而且同樣方便訓(xùn)練和移植。該項目上線僅兩天,Star 量已經(jīng)超過 200。

項目地址:https://github.com/RangiLyu/nanodet NanoDet 模型介紹 NanoDet 是一個速度超快和輕量級的移動端 Anchor-free 目標(biāo)檢測模型。該模型具備以下優(yōu)勢:

超輕量級:模型文件大小僅 1.8m;

速度超快:在移動 ARM CPU 上的速度達到 97fps(10.23ms);

訓(xùn)練友好:GPU 內(nèi)存成本比其他模型低得多。GTX1060 6G 上的 Batch-size 為 80 即可運行;

方便部署:提供了基于 ncnn 推理框架的 C++ 實現(xiàn)和 Android demo。

模型性能 目前開源的 NanoDet-m 模型在 320x320 輸入分辨率的情況下,整個模型的 Flops 只有 0.72B,而 yolov4-tiny 則有 6.96B,小了將近十倍。模型的參數(shù)量也只有 0.95M,權(quán)重文件在使用 ncnn optimize 進行 16 位存儲之后,只有 1.8mb。 盡管模型非常的輕量,但是它的性能不容小覷。在與其他模型進行比較時,項目作者選擇使用 COCO mAP (0.5:0.95) 作為評估指標(biāo),兼顧檢測和定位的精度,在 COCO val 5000 張圖片上測試,并且沒有使用 Testing-Time-Augmentation。在這種設(shè)置下,320 分辨率輸入能夠達到 20.6 的 mAP,比 tiny-yolov3 高 4 分,只比 yolov4-tiny 低 1 個百分點。在將輸入分辨率與 YOLO 保持一致,都使用 416 輸入的情況下,NanoDet 與 yolov4-tiny 得分持平。具體結(jié)果如下表所示:

以上性能基于 ncnn 和麒麟 980 (4xA76+4xA55) ARM CPU 獲得。 此外,項目作者將 ncnn 部署到手機(基于 ARM 架構(gòu)的 CPU 麒麟 980,4 個 A76 核心和 4 個 A55 核心)上之后跑了一下 benchmark,模型前向計算時間只要 10 毫秒左右,而 yolov3 和 v4 tiny 均在 30 毫秒的量級。在安卓攝像頭 demo app 上,算上圖片預(yù)處理、檢測框后處理以及繪制檢測框的時間,NanoDet 也能輕松跑到 40+FPS。

NanoDet 和 yolov4-tiny 的性能對比。 最后,該項目提供了 Android demo、C++ demo 和 Python demo。NanoDet 在安卓端的目標(biāo)檢測結(jié)果如下所示:

NanoDet 方法 NanoDet 是一種 FCOS 式的單階段 anchor-free 目標(biāo)檢測模型,它使用 ATSS 進行目標(biāo)采樣,使用 Generalized Focal Loss 損失函數(shù)執(zhí)行分類和邊框回歸(box regression)。 據(jù)項目作者介紹,該項目的主要目的是希望開源一個移動端實時的 Anchor-free 檢測模型,能夠提供不亞于 YOLO 系列的性能,并且方便訓(xùn)練和移植。為此,他參考了以下研究: 最終得到的 NanoDet 模型架構(gòu)如下:

損失函數(shù) 項目作者想要實現(xiàn)一個 FCOS 式的 anchor-free 目標(biāo)檢測模型,但將 FCOS 輕量化處理時,由于 FCOS 的 centerness 分支在輕量級的模型上很難收斂,模型效果不如預(yù)期。 最終,NanoDet 使用了李翔等人提出的 Generalized Focal Loss 損失函數(shù)。該函數(shù)能夠去掉 FCOS 的 Centerness 分支,省去這一分支上的大量卷積,從而減少檢測頭的計算開銷,非常適合移動端的輕量化部署。

圖源:https://arxiv.org/pdf/2006.04388.pdf 檢測頭輕量化 找到合適的損失函數(shù)后,如何使其在輕量級模型上發(fā)揮作用呢? 首先需要優(yōu)化的是檢測頭。 FCOS 系列使用了共享權(quán)重的檢測頭,即對 FPN 出來的多尺度 Feature Map 使用同一組卷積預(yù)測檢測框,然后每一層使用一個可學(xué)習(xí)的 Scale 值作為系數(shù),對預(yù)測出來的框進行縮放。

圖源:https://openaccess.thecvf.com/content_ICCV_2019/papers/Tian_FCOS_Fully_Convolutional_One-Stage_Object_Detection_ICCV_2019_paper.pdf 這么做的好處是能夠?qū)z測頭的參數(shù)量降低為不共享權(quán)重狀態(tài)下的 1/5。這對于光是檢測頭就擁有數(shù)百通道卷積的大模型來說非常有用,但是對于輕量化模型來說,共享權(quán)重檢測頭并沒有很大的意義。由于移動端模型推理由 CPU 執(zhí)行計算,共享權(quán)重并不會帶來推理過程的加速,而且在檢測頭非常輕量的情況下,共享權(quán)重使其檢測能力進一步下降,因此項目作者認為選擇對每一層特征使用一組卷積比較合適。 同時,F(xiàn)COS 系列在檢測頭上使用了 Group Normalization(GN)作為歸一化方式,GN 對比 BN(Batch Normalization)有很多好處,但是卻有一個缺點:BN 在推理時能夠?qū)⑵錃w一化的參數(shù)直接融合進卷積中,可以省去這一步計算,而 GN 則不行。為了能夠節(jié)省歸一化操作的時間,項目作者選擇將 GN 替換為 BN。 FCOS 的檢測頭使用了 4 個 256 通道的卷積作為一個分支,也就是說在邊框回歸和分類兩個分支上一共有 8 個 c=256 的卷積,計算量非常大。為了將其輕量化,項目作者首先選擇用深度可分離卷積替換普通卷積,并且將卷積堆疊的數(shù)量從 4 個減少為 2 組。在通道數(shù)上,將 256 維壓縮至 96 維,之所以選擇 96,是因為需要將通道數(shù)保持為 8 或 16 的倍數(shù),能夠享受到大部分推理框架的并行加速。 最后,項目作者借鑒了 YOLO 系列的做法,將邊框回歸和分類使用同一組卷積進行計算,然后 split 成兩份。最終得到的輕量化檢測頭如下圖所示:

FPN 層改進 目前針對 FPN 的改進有許多,如 EfficientDet 使用了 BiFPN,YOLO v4 和 v5 使用了 PAN,除此之外還有 BalancedFPN 等等。BiFPN 雖然性能強大,但是堆疊的特征融合操作會導(dǎo)致運行速度降低,而 PAN 只有自上而下和自下而上兩條通路,非常簡潔,是輕量級模型特征融合的好選擇。 原版的 PAN 和 YOLO 系列中的 PAN 都使用了 stride=2 的卷積進行大尺度 Feature Map 到小尺度的縮放。而該項目出于輕量化的考慮,選擇完全去掉 PAN 中的所有卷積,只保留從骨干網(wǎng)絡(luò)特征提取后的 1x1 卷積來進行特征通道維度的對齊,上采樣和下采樣均使用插值來完成。與 YOLO 使用的 concatenate 操作不同,項目作者選擇將多尺度的 Feature Map 直接相加,使整個特征融合模塊的計算量變得非常小。 最終得到的極小版 PAN 結(jié)構(gòu)非常簡單:

NanoDet 使用的超輕量 PAN(圖源:https://zhuanlan.zhihu.com/p/306530300) 骨干網(wǎng)絡(luò) 項目作者選擇使用 ShuffleNetV2 1.0x 作為骨干網(wǎng)絡(luò),他去掉了該網(wǎng)絡(luò)的最后一層卷積,并且抽取 8、16、32 倍下采樣的特征輸入到 PAN 中做多尺度的特征融合。整個骨干模型使用了 Torchvision 提供的代碼,能夠直接加載 Torchvision 上提供的 imagenet 預(yù)訓(xùn)練權(quán)重,對加快模型收斂起到很大幫助。 目前,項目作者已將 Pytorch 訓(xùn)練代碼、基于 NCNN 的 Linux 和 Windows C++ 部署代碼以及 Android 攝像頭 Demo 全部開源,并在 Readme 中提供了詳細教程,參見項目 GitHub 主頁。

責(zé)任編輯:PSY

原文標(biāo)題:1.8M超輕量目標(biāo)檢測模型NanoDet,比YOLO跑得快,上線兩天Star量超200

文章出處:【微信公眾號:通信信號處理研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 檢測模型
    +關(guān)注

    關(guān)注

    0

    文章

    17

    瀏覽量

    7372
  • 移動端
    +關(guān)注

    關(guān)注

    0

    文章

    42

    瀏覽量

    4577
  • GitHub
    +關(guān)注

    關(guān)注

    3

    文章

    482

    瀏覽量

    17568

原文標(biāo)題:1.8M超輕量目標(biāo)檢測模型NanoDet,比YOLO跑得快,上線兩天Star量超200

文章出處:【微信號:tyutcsplab,微信公眾號:智能感知與物聯(lián)網(wǎng)技術(shù)研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    首創(chuàng)開源架構(gòu),璣AI開發(fā)套件讓側(cè)AI模型接入得心應(yīng)手

    的自有模型移植,使首字詞生態(tài)速度比云端方案提升70%,賦能絕影多模態(tài)智能座艙強大的側(cè)運行能力,讓汽車擁有“有趣的靈魂”。 不僅如此,璣AI開發(fā)套件已經(jīng)接入NVIDIA TAO生態(tài)
    發(fā)表于 04-13 19:52

    沐曦GPU跑通DeepSeek開源代碼庫FlashMLA

    今日,DeepSeek正式啟動"開源周"計劃,首發(fā)代碼庫FlashMLA一經(jīng)開源即引發(fā)全網(wǎng)關(guān)注。截至發(fā)稿,該項目已在GitHub斬獲超7.2K Star!
    的頭像 發(fā)表于 02-25 16:25 ?811次閱讀

    超過150萬個大模型,DeepSeek全球最受歡迎

    范圍內(nèi)成為爆火的 AI 大模型。1 月 26 日,DeepSeek 首次登上蘋果 App Store 全球榜首并持續(xù)領(lǐng)先。上線 18 ,其下載達到 1600 萬次,幾乎是同期
    的頭像 發(fā)表于 02-25 00:13 ?2952次閱讀
    <b class='flag-5'>超過</b>150萬個大<b class='flag-5'>模型</b>,DeepSeek全球最受歡迎

    【米爾RK3576開發(fā)板評測】+項目名稱百度飛槳PP-YOLOE

    一、簡介 PP-YOLOE是百度基于其之前的PP-YOLOv2所改進的卓越的單階段Anchor-free模型,超越了多種流行的YOLO模型。PP-YOLOE,有更高的檢測精度且部署友好
    發(fā)表于 02-15 17:14

    DeepSeek GitHub星數(shù)超OpenAI

    近日,在全球最大的代碼托管平臺GitHub上,DeepSeek項目取得了一項顯著成就——其Star數(shù)量成功超越了OpenAI。這一變化標(biāo)志著開源人工智能領(lǐng)域的競爭格局正在發(fā)生微妙的變化。
    的頭像 發(fā)表于 02-10 18:28 ?748次閱讀

    DeepSeek-R1全尺寸版本上線Gitee AI

    繼 DeepSeek 全套蒸餾模型以及 V3 版本上線后,經(jīng)過 Gitee AI 和沐曦團隊兩天緊鑼密鼓的適配和機器籌備,DeepSeek-R1全尺寸版本現(xiàn)在已上線 Gitee AI
    的頭像 發(fā)表于 02-07 15:25 ?1174次閱讀

    騰訊混元大模型開源成績斐然,GitHub Star數(shù)近1.4萬

    內(nèi)外部技術(shù)的開源共享,旨在促進技術(shù)創(chuàng)新與生態(tài)發(fā)展。 據(jù)悉,騰訊混元大模型已經(jīng)在多個模態(tài)上實現(xiàn)了開源,包括語言大模型、文生圖大
    的頭像 發(fā)表于 12-26 10:30 ?706次閱讀

    AI模型部署邊緣設(shè)備的奇妙之旅:目標(biāo)檢測模型

    的是百度的Picodet模型,它是一種基于深度卷積網(wǎng)絡(luò)(DNN)的輕量級目標(biāo)檢測模型,具有非常高的檢測精度,可以在低算力設(shè)備進行實時
    發(fā)表于 12-19 14:33

    ADS1299用一個頻率為1Hz的正弦波來作為模擬輸入信號,當(dāng)峰峰值超過10mV是就已經(jīng)滿量程了,為什么?

    我這兩天遇到一個問題,麻煩您幫我解答一下。謝謝!下面為您描述我的問題: 我選擇ADS1299的芯片,PGA放大到24倍,按照用戶手冊上Vref為4.5V,按照下面的公式計算出1個LSB為
    發(fā)表于 12-13 06:22

    MediaTek移動平臺賦能騰訊會議側(cè)AI人像分割模型

    MediaTek 與騰訊會議聯(lián)合優(yōu)化的側(cè) NPU 虛擬背景功能,已在搭載 MediaTek 璣旗艦芯的終端正式上線。作為雙方初次開展的軟硬件生態(tài)合作,此次聯(lián)合優(yōu)化旨在充分利用
    的頭像 發(fā)表于 11-29 15:30 ?660次閱讀

    《DNK210使用指南 -CanMV版 V1.0》第三十九章 YOLO2人臉檢測實驗

    6. 支持種padding方式,分別為任意填充和取最近值7. 支持在輸入圖像行高超過256時,自動對卷積結(jié)果進行抽樣,保留奇數(shù)行奇數(shù)列結(jié)果8. 支持卷積參數(shù)、批歸一化參數(shù)、激活參數(shù)配置,AI加速器
    發(fā)表于 11-13 09:37

    GitHub Copilot引入多模型支持

    近日,據(jù)外媒報道,GitHub正在為其代碼完成和編程工具Copilot引入多模型支持。這一舉措將為開發(fā)者提供更加靈活和多樣化的選擇。 在近日舉辦的GitHub Universe大會上,GitH
    的頭像 發(fā)表于 10-31 11:49 ?961次閱讀

    GitHub推出GitHub Models服務(wù),賦能開發(fā)者智能選擇AI模型

    8月2日,全球領(lǐng)先的代碼托管平臺GitHub宣布了一項重大創(chuàng)新——GitHub Models服務(wù)的正式推出。該服務(wù)被定位為AI時代的工程師助手,旨在幫助全球超過1億的GitHub用戶輕
    的頭像 發(fā)表于 08-02 15:39 ?996次閱讀

    tcp方式連接不了服務(wù)器了,服務(wù)器代碼還能開源嗎?

    是在維護服務(wù)器嗎?已經(jīng)兩天了。http方式還可以連接上,就tcp的方式不行了.服務(wù)器代碼能開源嗎?讓我們自己搭建服務(wù)器用。
    發(fā)表于 07-15 06:53

    RT-Thread 新里程碑達成——GitHub Star 破萬!

    RT-Thread實時操作系統(tǒng)開源項目在GitHub上的star數(shù)量突破一萬!截止發(fā)文,RT-Thread作為實時操作系統(tǒng)在業(yè)界
    的頭像 發(fā)表于 07-04 08:35 ?736次閱讀
    RT-Thread 新里程碑達成——<b class='flag-5'>GitHub</b> <b class='flag-5'>Star</b> 破萬!