一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

語義分割速覽—全卷積網(wǎng)絡(luò)FCN

電子設(shè)計(jì) ? 來源:電子設(shè)計(jì) ? 作者:電子設(shè)計(jì) ? 2020-12-10 19:24 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

簡單過一下語義分割的主流框架——FCN、UNet、SegNet、PSPNet、DeepLab

全卷積網(wǎng)絡(luò)FCN

論文:《Fully Convolutional Networks for Semantic Segmentation(CVPR2015)
參考:《FCN的學(xué)習(xí)及理解 | CSDN, moonuke
主要貢獻(xiàn):

  1. 在分類網(wǎng)絡(luò)的基礎(chǔ)上,取消要求固定輸入長度的全連接FC,使網(wǎng)絡(luò)能接受任意尺寸的輸入
  2. 在網(wǎng)絡(luò)深層部分使用反卷積層上采樣,恢復(fù)深層特征的空間尺度
  3. 淺層特征注重細(xì)致的局部、位置信息,深層特征注重抽象的全局、分類信息。通過跨層連接,融合淺層(上采樣前)和深層(上采樣后)特征以提高網(wǎng)絡(luò)的表現(xiàn)

為了跟圖示統(tǒng)一,后續(xù)將以AlexNet為backbone進(jìn)行討論。

從CNN到FCN

就像《卷積神經(jīng)網(wǎng)絡(luò)CNN - 全連接層 | Hey~YaHei!》所提到的,卷積神經(jīng)網(wǎng)絡(luò)CNN因?yàn)槿B接層的限制,要求網(wǎng)絡(luò)輸入具有固定的尺寸大小。FCN作者將最后的三個(gè)全連接層換成1x1卷積,如果輸入特征圖恰好是1x1,那明顯是等價(jià)的;如果不是1x1,那網(wǎng)絡(luò)也不至于出錯(cuò),但輸出大小也會由輸入大小決定。

反卷積上采樣

FCN用反卷積(deconvolution)在網(wǎng)絡(luò)深層做上采樣操作,以恢復(fù)出輸入圖片同等尺寸的分割結(jié)果,也就是每個(gè)像素點(diǎn)的類別。
反卷積其實(shí)相當(dāng)于零填充上采樣+卷積,與padding不同的是,它填充在輸入特征圖的像素點(diǎn)之間。

3x3標(biāo)準(zhǔn)卷積 3x3反卷積 3x3空洞卷積
(以上三圖,藍(lán)色方塊為輸入特征圖的像素點(diǎn),綠色方塊為輸出特征圖像素點(diǎn),空白部分填零)


關(guān)于反卷積的詳細(xì)過程此處不再贅述,感興趣可以參考《怎樣通俗易懂地解釋反卷積? | 知乎, 孫小也


值得一提的是,通常部署的時(shí)候不喜歡用反卷積,因?yàn)橥评硪嫱鶝]有針對反卷積做充分的優(yōu)化。大多都直接用雙線性插值/三線性插值做上采樣(簡化操作順便提高推理速度),頂多再疊一層普通卷積來進(jìn)一步提取特征。

跨層融合

眾所周知,淺層特征注重細(xì)致的局部、位置信息,深層特征注重抽象的全局、分類信息。分類任務(wù)里不關(guān)注位置信息,所以隨著網(wǎng)絡(luò)前傳,即使特征圖分辨率越來越小,信息越來越抽象,位置信息逐步丟失,也無傷大雅。但檢測任務(wù)和分割任務(wù)不同,除了需要給出對象的分類之外,還得給出位置信息——因此淺層特征的位置得想辦法把它保留下來,比較直觀的想法就是跨層把淺層和深層信息融合起來。

融合的方式有很多,最簡單的如逐元素相加/相乘,或者連接特征(一般是從通道維度上做拼接)后做進(jìn)一步的特征提取。FCN采用的即是簡單的逐元素相加的形式,以500x500x3的輸入圖片為例(虛線以上就一個(gè)普通的全卷積網(wǎng)絡(luò),虛線以下是跨層融合相關(guān)的層)——

  • 首先,由于不做分類任務(wù),作為“分類器”的最后一層全連接()可以直接丟棄,保留前端的特征提取部分;
  • 分別將若干淺層特征圖和最后的特征圖抽離出來,經(jīng)過卷積層特征映射到21通道的特征空間上(這里以VOC數(shù)據(jù)集為例,20正樣本+1負(fù)樣本(背景)=21分類),然后反卷積進(jìn)行上采樣(如圖虛線以下的藍(lán)色方塊,有必要的話還得裁剪,通常是中央裁剪,到統(tǒng)一的尺寸),再對應(yīng)逐元素相加(如圖黃色方塊)達(dá)到特征融合的目的;
  • 最后再一個(gè)反卷積上采樣(配合裁剪)到原始尺寸,通道方向即相當(dāng)于分類任務(wù)里的輸出特征向量,決定著每個(gè)像素點(diǎn)所屬的分類

訓(xùn)練細(xì)節(jié)

FCN采用普通的softmax交叉熵作為損失函數(shù),既然通道方向決定了每個(gè)像素點(diǎn)的類別,那就對每個(gè)像素點(diǎn)計(jì)算softmax交叉熵,最后加和起來作為最終的損失進(jìn)行訓(xùn)練。

原文倒是講究,采用分階段訓(xùn)練的方式,用與訓(xùn)練好的分類網(wǎng)絡(luò)作為backbone,丟棄最后一層全連接,其他全連接替換成卷積并重新初始化權(quán)重(丟棄原有的全連接權(quán)重),再逐一融合中間層特征進(jìn)行多階段訓(xùn)練。

階段 訓(xùn)練部分
#1
#2
#3
#4

UNet

論文:《U-Net: Convolutional Networks for Biomedical Image Segmentation(MICCAI2015)
主要貢獻(xiàn):

  1. 以拼接+進(jìn)一步提取特征的形式融合淺層(上采樣前)與深層(上采樣后)特征
  2. 用重疊切片的平鋪策略對大尺度圖像進(jìn)行分割
  3. 采用加權(quán)的損失函數(shù),加大邊緣部分像素的權(quán)重,鼓勵(lì)網(wǎng)絡(luò)區(qū)分邊界,有助于實(shí)例分割

拼接實(shí)現(xiàn)的跨層融合


網(wǎng)絡(luò)整體結(jié)構(gòu)呈現(xiàn)U型的對稱結(jié)構(gòu),故稱為UNet,左半部分為卷積組成的下采樣路徑,右半部分為反卷積和卷積組成的上采樣路徑。下采樣路徑每個(gè)階段包含兩_次_卷積和一次池化(卷積通道擴(kuò)增+卷積等通道特征提取+池化下采樣),上采樣路徑每個(gè)階段包含一次反卷積和兩次卷積(反卷積上采樣并收縮通道+卷積通道收縮+卷積等通道特征提?。?/p>

與FCN不同的是,UNet采取的是拼接(Concat)+進(jìn)一步提取特征的特征融合方式,如上圖上采樣路徑最左側(cè)的藍(lán)色外框空白填充的方塊。相比粗暴的逐點(diǎn)相加,拼接更好的保留淺層的特征信息,但相對地也會增加計(jì)算的開銷。

為了保證拼接的正確性,淺層特征圖需要裁剪到目標(biāo)尺寸,如上圖下采樣路徑最右側(cè)藍(lán)色方塊的虛線部分,這里通常采用的是中央裁剪。拼接后由于通道倍增,按照“特征圖尺寸倍增,通道減半;尺寸減半,通道倍增”的慣例,需要先用卷積把通道數(shù)收縮到原來的一半。

重疊切片的平鋪策略

UNet對大尺寸圖像分割任務(wù)采用了重疊切片的平鋪策略。

首先要注意到UNet與常規(guī)的網(wǎng)絡(luò)不同,所有的卷積和池化都不加以padding(為了2x2池化下采樣不加padding由不丟失信息,需要保證每次池化輸入的尺寸為2的倍數(shù)),于是每做一次卷積,特征圖都會稍微收縮一點(diǎn)點(diǎn),這就導(dǎo)致了UNet的輸出尺寸小于輸入尺寸(如上圖,572x572的輸入最后出來只有392x392的掩膜)。

不padding意味著不引入無效信息,直觀上是有好處的;另外這相當(dāng)于用一張更大的圖像來預(yù)測中央小區(qū)域的分割結(jié)果,相當(dāng)于在分割的時(shí)候輸入了目標(biāo)區(qū)域以外的外圍信息(如上圖,藍(lán)色框表示輸入U(xiǎn)Net的圖像,最終只能產(chǎn)生黃色框部分的分割結(jié)果,實(shí)際在推理黃色框分割結(jié)果的時(shí)候也引用了黃色框以外藍(lán)色框以內(nèi)的外圍信息的),這有助于提高模型的表現(xiàn)。

此外,UNet每步迭代采用單張圖片輸入,通過最大化輸入圖片尺寸來充分利用顯存,同時(shí)對優(yōu)化器采取一個(gè)較大的動(dòng)量(如0.99)使之前的迭代結(jié)果能對本次迭代產(chǎn)生較大的影響,以此穩(wěn)定訓(xùn)練過程。

加權(quán)損失懲罰邊緣像素

首先看一下softmax交叉熵:

為了著重某些特殊的像素點(diǎn),可以賦予一個(gè)權(quán)重,此時(shí)損失函數(shù)改造為



其中,
是權(quán)衡分類為每個(gè)分類所設(shè)置的一個(gè)損失權(quán)重;
和也是人為設(shè)置的權(quán)重,如論文中推薦的
和分別代表當(dāng)前像素點(diǎn)到最近和次近的細(xì)胞的歐式距離
將計(jì)算出來的可視化后可以得到上圖中的(d)

由于損失中對邊緣位置的像素作出的較重的懲罰,最終將鼓勵(lì)網(wǎng)絡(luò)在實(shí)例邊界做出較好的區(qū)分。


原文中還提到了對卷積參數(shù)采用標(biāo)準(zhǔn)差為的高斯分布初始化方式(如3x3卷積,輸入通道數(shù)為64,有),這種方式其實(shí)跟He Initialization也差不多。事實(shí)上自從BN層的出現(xiàn)之后,深度學(xué)習(xí)網(wǎng)絡(luò)對參數(shù)初始化也不再那么敏感。

變種和改進(jìn)

UNet變種:《圖像分割的U-Net系列方法 | 知乎, taigw 》
UNet++:《研習(xí)U-Net | 知乎, 周縱葦

SegNet

論文:《SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation(TPAMI2016)
參考:《SegNet圖像分割網(wǎng)絡(luò)直觀詳解 | 知乎, 郭冠華
主要貢獻(xiàn):用反池化替代反卷積進(jìn)行上采樣,簡化上采樣過程,降低計(jì)算開銷


整體結(jié)構(gòu)跟FCN和UNet其實(shí)差不多,主要差別在于上采樣的手段變成了反池化。

反池化上采樣

假設(shè)下采樣路徑采用的是最大池化,2x2池化操作如下圖所示:



每個(gè)滑窗只會采樣最大值作為輸出,反池化上采樣則是反過來,把一個(gè)像素值填到一個(gè)2x2的輸出框內(nèi),為了跟下采樣對應(yīng),需要在做最大值池化的時(shí)候記錄采樣點(diǎn)的索引(如總體框架圖上的Pooling Indices信息),反池化的時(shí)候則填到對應(yīng)位置上的。其余三個(gè)像素點(diǎn)則直接填零,由后續(xù)的卷積層完成特征圖的平滑處理。



反池化有三個(gè)優(yōu)點(diǎn):

  1. 改善了邊緣輪廓的處理
  2. 減少參數(shù)數(shù)量和計(jì)算量
  3. 容易實(shí)現(xiàn),可以很方便地應(yīng)用到其他框架中

PSPNet

論文:《Pyramid Scene Parsing Network (CVPR2017)
參考:《論文筆記:Pyramid Scene Parsing Network | 簡書, Efackw13》
【圖像分割模型】多感受野的金字塔結(jié)構(gòu)—PSPNet | 知乎, 言有三
主要貢獻(xiàn):

  1. 從場景解析實(shí)際任務(wù)中發(fā)現(xiàn)了關(guān)系失配、相似分類混淆、不顯眼物體難識別三個(gè)問題
  2. 在最后得到分割結(jié)果前,用混合尺度的池化獲取不同感知區(qū)域的局部信息,加強(qiáng)網(wǎng)絡(luò)對場景的感知

三個(gè)問題

作者在場景解析的實(shí)際任務(wù)當(dāng)中發(fā)現(xiàn)FCN存在以下問題:

  1. 關(guān)系失配:比如在水面上識別出了汽車(如下圖第一行所示)
  2. 相似分類混淆:比如把摩天大樓內(nèi)部的一部分像素識別成普通建筑(如下圖第二行所示)
  3. 不顯眼物體難識別:比如在床被上識別不出相似花紋的枕頭(如下圖第三行所示)

金字塔池化模塊(Pyramid Pooling Module)

為了解決上述三個(gè)問題,PSPNet提出了金字塔池化模塊,該模塊插入在輸出分割結(jié)果前的最后一個(gè)特征圖后邊。

首先由CNN提取出特征圖(PSPNet沒像FCN, UNet, SegNet一樣建立淺層到深層之間的跨層連接),然后經(jīng)過不同的池化層下采樣出不同尺寸的特征圖(原文下采樣為1x1, 2x2, 3x3, 6x6四種特征圖),接著分別由卷積層將通道收縮為原來的1/N(原文中N=4)以保證拼接之后通道數(shù)與原來相同,由此得到不同尺寸的感知區(qū)域的局部信息。再將不同尺寸的局部信息上采樣為原來特征圖的尺寸但不改變通道數(shù)量(原文用雙線性插值來上采樣),與原始特征圖拼接起來,最后經(jīng)過卷積層映射到目標(biāo)空間得到分割結(jié)果。

hszhao/PSPNet | github為例,用netron可視化后可以看到詳細(xì)的金字塔池化模塊及后續(xù)處理的結(jié)構(gòu):

輔助損失

除了最終的分割分類損失之外,PSPNet還在中間位置加入了輔助損失,如下圖所示,對ResNet第四階段的輸出特征圖提前取出并且上采樣到輸入圖片的尺寸,然后計(jì)算輔助損失loss2,并與主損失loss1加權(quán)求和后反傳。

yassouali/pytorch_segmentation/trainer.py#L61 | github設(shè)置了權(quán)重為0.4;
用于計(jì)算loss2的特征圖的產(chǎn)生,具體也可以參見 yassouali/pytorch_segmentation/models/pspnet.py 的L65-L71L90-L94

DeepLab

參考:《【語義分割系列:一】DeepLab v1 / v2 論文閱讀翻譯筆記 | CSDN, 鹿鹿最可愛
【語義分割系列:五】DeepLab v3 / v3+ 論文閱讀翻譯筆記 | CSDN, 鹿鹿最可愛
deeplab系列總結(jié)(deeplab v1& v2 & v3 & v3+) | CSDN, Dlyldxwl

v1

論文:《Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs (ICLR2015)
主要貢獻(xiàn):

  1. 結(jié)合CNN和PGM(概率圖模型)
  2. 使用空洞卷積替代標(biāo)準(zhǔn)卷積,在保持計(jì)算量的同時(shí)增大感受野

(為了與原文對應(yīng),以下討論均以VGG16為backbone)
_

兩個(gè)問題

  1. 典型的CNN隨著模型的深入需要逐漸下采樣,這就導(dǎo)致信號(特征圖)的分辨率逐漸減??;盡管可以通過減少下采樣實(shí)現(xiàn),但卻帶來另一個(gè)問題,即感受野偏??;
  2. 分類任務(wù)要求空間不變性,即圖像經(jīng)過空間變換(如旋轉(zhuǎn)、平移)后識別的類別不發(fā)生改變;而分割任務(wù)不同,像素的定位信息也至關(guān)重要,如果圖像經(jīng)過空間變換,那么要求模型預(yù)測結(jié)果也要隨之改變

減少下采樣和使用空洞卷積

(緩解第一個(gè)問題)
按照常規(guī)利用分類網(wǎng)絡(luò)做backbone的方式,作者剝離掉VGG16最后的三層全連接,此時(shí)最后一層卷積層的輸出特征圖分辨率為7x7,與輸入的原始圖像分辨率224x224相比,已經(jīng)下采樣了32倍,丟失了非常多的細(xì)節(jié)信息(原文中稱之為很sparse、不dense)。

為了保留更多的信息,作者將最后兩層池化的步長修改為1,也即取消了這兩個(gè)池化的下采樣功能,此時(shí)相當(dāng)于只下采樣了8倍。但如上一小節(jié)所說,這樣就帶來新的感受野偏小的問題。

DeepLab使用空洞卷積(dilated convolution)來解決這個(gè)問題,同時(shí)節(jié)約了不少的計(jì)算量。關(guān)于空洞卷積的圖示和幾種卷積的比較可以參考 FCN的反卷積上采樣一節(jié)。

(“下采樣-標(biāo)準(zhǔn)卷積-上采樣”和“空洞卷積”的效果比較,圖源自v2)


(“標(biāo)準(zhǔn)卷積-下采樣”和“空洞卷積”特征圖尺寸變化示意,圖源自以ResNet為backbone的v3)


簡單來說,空洞卷積通過跳躍性地采樣,能以3x3的卷積核得到5x5、7x7等更大的等效感受野。
前述兩個(gè)取消下采樣功能的池化層之后的卷積層就換成了成空洞卷積。

緩解了第一個(gè)問題后,論文同時(shí)指出隨后的上采樣不再需要反卷積來恢復(fù)分辨率,直接雙線性插值就可以得到可觀的結(jié)果。訓(xùn)練時(shí)直接對ground truth下采樣8倍,然后與改造后的VGG16輸出求交叉熵作為損失函數(shù);預(yù)測時(shí)則直接雙線性插值得到分割的結(jié)果。

全連接條件隨機(jī)場后處理

(緩解第二個(gè)問題)
全連接條件隨機(jī)場(Fully Connected Conditional Random Field, Fully Connected CRF


(上下兩行分別是softmax的輸入和輸出)

如上圖的 DCNN output 一列所示,經(jīng)過層層的下采樣和上采樣,特征圖逐漸丟失部分信息,導(dǎo)致最終輸出的圖像顯得比較平滑。而分割任務(wù)希望分割的結(jié)果邊緣輪廓能夠比較清楚犀利,于是作者引入了全連接CRF對CNN的輸出結(jié)果進(jìn)行后處理。

在傳統(tǒng)的圖像處理中,CRF通常用相鄰像素來設(shè)計(jì)能量函數(shù),從而消除一些噪音,達(dá)到平滑處理的目的。然而在分割中,我們的目標(biāo)是恢復(fù)局部信息而非進(jìn)一步平滑處理。
因此作者借鑒了《Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials (NIPS2011)》全連接條件隨機(jī)場來實(shí)現(xiàn)分割結(jié)果的銳化處理。其能量函數(shù)為

其中

對于一元項(xiàng)來說,是CNN產(chǎn)生的像素點(diǎn)的概率分布;
對于二元項(xiàng)來說,
,這意味著每個(gè)像素點(diǎn)都會和全圖像的所有像素點(diǎn)建立聯(lián)系,也即“全連接”;
求和項(xiàng)里是加權(quán)的應(yīng)用在像素特征上的高斯核函數(shù),原文采用像素點(diǎn)值和位置構(gòu)造核函數(shù)

這里包含兩項(xiàng),第一項(xiàng)包含位置信息和值信息,后一項(xiàng)值考慮位置信息,兩者通過和加權(quán);
而也是人工設(shè)置的超參數(shù)

融合多尺度信息進(jìn)行預(yù)測

和FCN、UNet一樣,作者也嘗試從淺層抽取特征與深層融合完成最后的分割預(yù)測。
具體來說,在輸入圖片和中間池化結(jié)果(前四個(gè)池化層的輸出)上分別加兩層卷積(3x3+1x1)做特征提取和通道縮放映射,使得分割效果得到少量的提升,但這個(gè)提升明顯不如全連接CRF(兩者可以兼容使用)。

v2

論文:《DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs (CVPR2016)
主要貢獻(xiàn):對同一張?zhí)卣鲌D使用不同dilation的空洞卷積,并用多孔空間金字塔池化下采樣到同一尺寸,以此融合多種感受野的特征信息。

多孔空間金字塔池化(Atrous Spatial Pyramid Pooling, ASPP)

思路很簡單,其實(shí)是何愷明的空間金字塔池化的一個(gè)演化。關(guān)于空間金字塔池化(SPP)的內(nèi)容可以回顧《漫談池化層 - 空間金字塔池化 | Hey~YaHei!》,此處不再贅述。

(圖中rate指的就是我們常說的dilation,也即對輸入特征圖兩個(gè)采樣點(diǎn)的間隔,如標(biāo)準(zhǔn)卷積dilation=1)

v3

論文:《Rethinking Atrous Convolution for Semantic Image Segmentation (CVPR2017)
主要貢獻(xiàn):

  1. 歸納了四種常見的語義分割框架
  2. 改進(jìn)了v2提出的ASSP

(原文以ResNet為backbone)

常見語義分割框架的比較

  1. 圖像金字塔
    多尺度輸入,小尺度輸入響應(yīng)語義,大尺度輸入響應(yīng)細(xì)節(jié),最后融合多個(gè)結(jié)果,多個(gè)模型之間可以共享部分底層特征;顯著缺點(diǎn)是模型冗余而龐大,推理慢開銷大,訓(xùn)練麻煩
  2. 編碼器-解碼器
    深層捕獲更加抽象的分類信息,輔之融合淺層特征恢復(fù)目標(biāo)的細(xì)節(jié)尤其是空間信息
  3. 級聯(lián)空洞卷積
    減少將采樣保持特征圖上的細(xì)節(jié)尤其是空間信息,利用空洞卷積擴(kuò)大感受野
  4. 空間金字塔池化
    用不同dilation的并行空洞卷積提取不同感受野下的特征,最后用ASSP下采樣到統(tǒng)一尺度進(jìn)行特征融合

改進(jìn)ASSP

  • 去掉一個(gè)“dilation=24的3x3卷積”分支
  • 增加一個(gè)“1x1的標(biāo)準(zhǔn)卷積”分支
  • 增加一個(gè)“全局平均池化 + 1x1標(biāo)準(zhǔn)卷積 + 雙線性插值上采樣”分支

v3+

論文:《Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation (ECCV2018)
主要貢獻(xiàn):

  1. 借鑒編碼器-解碼器架構(gòu),額外融合中間特征提高最終的分割能力
  2. 引入深度可分離卷積

(原文以使用了深度可分離卷積的Xception為backbone)

額外融合中間特征


如圖,作者發(fā)現(xiàn)經(jīng)過空間金字塔池化之后直接做一次八倍上采樣過于粗暴,于是借鑒了編碼器-解碼器架構(gòu)的思路,在空間金字塔池化后的特征圖上采樣四倍之后,與從中間層抽離出特征相融合,再做一次四倍上采樣(注意編碼器部分比原始模型要多一層,所以與原輸入相比編碼器的輸出實(shí)際上下采樣了十六倍而非八倍,換句話v3+加深了網(wǎng)絡(luò))

深度可分離卷積

可參考《漫談卷積層 - 高效卷積 | Hey~YaHei!》,此處不再贅述。

損失函數(shù)

參考:《圖像分割領(lǐng)域常見的loss fuction有哪一些? | 知乎, 小鋒子Shawn

圖像增廣

工具:mdbloice/Augmentor支持在變換原圖的時(shí)候同步操作ground truth,很方便

審核編輯:符乾江

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1806

    文章

    49028

    瀏覽量

    249506
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122794
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    自動(dòng)駕駛感知系統(tǒng)中卷積神經(jīng)網(wǎng)絡(luò)原理的疑點(diǎn)分析

    背景 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)的核心技術(shù)主要包括以下幾個(gè)方面:局部連接、權(quán)值共享、多卷積核以及池化。這些技術(shù)共同作用,使得CNN在圖像
    的頭像 發(fā)表于 04-07 09:15 ?362次閱讀
    自動(dòng)駕駛感知系統(tǒng)中<b class='flag-5'>卷積</b>神經(jīng)<b class='flag-5'>網(wǎng)絡(luò)</b>原理的疑點(diǎn)分析

    如何使用MATLAB實(shí)現(xiàn)一維時(shí)間卷積網(wǎng)絡(luò)

    本文對一維卷積操作進(jìn)行介紹,包括一維擴(kuò)展卷積和一維因果卷積,以及 MATLAB 對一維卷積的支持情況。在最后通過一個(gè)實(shí)例演示如何在 MATLAB 中將一維
    的頭像 發(fā)表于 03-07 09:15 ?1082次閱讀
    如何使用MATLAB實(shí)現(xiàn)一維時(shí)間<b class='flag-5'>卷積</b><b class='flag-5'>網(wǎng)絡(luò)</b>

    一文 30KPA48A:快速響應(yīng),為電路安全保駕護(hù)航

    一文 30KPA48A:快速響應(yīng),為電路安全保駕護(hù)航
    的頭像 發(fā)表于 02-22 10:15 ?608次閱讀
    一文<b class='flag-5'>速</b><b class='flag-5'>覽</b> 30KPA48A:快速響應(yīng),為電路安全保駕護(hù)航

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    多層。 每一層都由若干個(gè)神經(jīng)元構(gòu)成,神經(jīng)元之間通過權(quán)重連接。信號在神經(jīng)網(wǎng)絡(luò)中是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(luò)(CNN) : CNN主要由卷積層、池化層和
    的頭像 發(fā)表于 02-12 15:53 ?668次閱讀

    SparseViT:以非語義為中心、參數(shù)高效的稀疏化視覺Transformer

    (IML)都遵循“語義分割主干網(wǎng)絡(luò)”與“精心制作的手工制作非語義特征提取”相結(jié)合的設(shè)計(jì),這種方法嚴(yán)重限制了模型在未知場景的偽影提取能力。 論文標(biāo)題: Can We Get Rid
    的頭像 發(fā)表于 01-15 09:30 ?458次閱讀
    SparseViT:以非<b class='flag-5'>語義</b>為中心、參數(shù)高效的稀疏化視覺Transformer

    瑞薩、ST、英飛凌等最新產(chǎn)品

    多家半導(dǎo)體大廠發(fā)布新品!涵蓋低功耗MCU、橋變壓器驅(qū)動(dòng)器、USB PD EPR解決方案等等新產(chǎn)品。 本周,瑞薩、ST、英飛凌、合泰發(fā)布多款低功耗MCU、橋變壓器驅(qū)動(dòng)器等新品,應(yīng)
    的頭像 發(fā)表于 12-16 10:16 ?770次閱讀
    瑞薩、ST、英飛凌等最新產(chǎn)品<b class='flag-5'>速</b><b class='flag-5'>覽</b>!

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實(shí)現(xiàn)工具和框架應(yīng)運(yùn)而生,為研究人員和開發(fā)者提供了強(qiáng)大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?671次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的參數(shù)調(diào)整方法

    卷積神經(jīng)網(wǎng)絡(luò)因其在處理具有空間層次結(jié)構(gòu)的數(shù)據(jù)時(shí)的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設(shè)置。參數(shù)調(diào)整是一個(gè)復(fù)雜的過程,涉及到多個(gè)超參數(shù)的選擇和優(yōu)化。 網(wǎng)絡(luò)架構(gòu)參數(shù)
    的頭像 發(fā)表于 11-15 15:10 ?1208次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語言處理中的應(yīng)用

    自然語言處理是人工智能領(lǐng)域的一個(gè)重要分支,它致力于使計(jì)算機(jī)能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為一種強(qiáng)大的模型,在圖像識別和語音處理等領(lǐng)域取得了顯著成果
    的頭像 發(fā)表于 11-15 14:58 ?807次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    神經(jīng)網(wǎng)絡(luò),也稱為連接神經(jīng)網(wǎng)絡(luò)(Fully Connected Neural Networks,F(xiàn)CNs),其特點(diǎn)是每一層的每個(gè)神經(jīng)元都與下一層的所有神經(jīng)元相連。這種結(jié)構(gòu)簡單直觀,但在處理圖像等高維數(shù)據(jù)時(shí)會遇到顯著的問題,如參數(shù)
    的頭像 發(fā)表于 11-15 14:53 ?1871次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來在多個(gè)領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個(gè)分支,因其在圖像處理任務(wù)中的卓越性能而受到廣泛關(guān)注。 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:52 ?846次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一類包含卷積計(jì)算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks
    的頭像 發(fā)表于 11-15 14:47 ?1782次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來越多地支持以前無法實(shí)現(xiàn)或者難以實(shí)現(xiàn)的應(yīng)用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對人工智能和機(jī)器學(xué)習(xí)的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)中提
    發(fā)表于 10-24 13:56

    語義分割25種損失函數(shù)綜述和展望

    語義圖像分割,即將圖像中的每個(gè)像素分類到特定的類別中,是許多視覺理解系統(tǒng)中的重要組成部分。作為評估統(tǒng)計(jì)模型性能的主要標(biāo)準(zhǔn),損失函數(shù)對于塑造基于深度學(xué)習(xí)的分割算法的發(fā)
    的頭像 發(fā)表于 10-22 08:04 ?1618次閱讀
    <b class='flag-5'>語義</b><b class='flag-5'>分割</b>25種損失函數(shù)綜述和展望

    UNet模型屬于哪種神經(jīng)網(wǎng)絡(luò)

    U-Net模型屬于卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)的一種特殊形式 。它最初由德國弗萊堡大學(xué)計(jì)算機(jī)科學(xué)系的研究人員在2015年提出,專為生物醫(yī)學(xué)圖像
    的頭像 發(fā)表于 07-24 10:59 ?5557次閱讀