作者 Mark Patrick
將AI推向邊緣的影響
在上一篇文章中,我們探索了將AI推向網(wǎng)絡(luò)邊緣的一些有力論點(diǎn)。本篇連載文章中,我們將討論哪些AI應(yīng)用能真正從這種方法中受益。首先,回顧一下在網(wǎng)絡(luò)邊緣實(shí)施AI的原因可以提供一些重要提示。請(qǐng)查看以下任何一項(xiàng)是否適用于項(xiàng)目:
● 無(wú)法訪問快速、穩(wěn)定的網(wǎng)絡(luò)連接
● 產(chǎn)品在受限環(huán)境中運(yùn)行
● 項(xiàng)目需要交付實(shí)時(shí)AI
● 可用預(yù)算有限
考慮到上述因素,通過在邊緣運(yùn)行ML模型可以使哪些具體的AI項(xiàng)目更容易運(yùn)行?
虛擬助手
Apple在2010年推出Siri,一如既往地再次引領(lǐng)了潮流。這為其他許多虛擬助手鋪平了道路,其中最著名的便是亞馬遜的Alexa和Google Assistant。虛擬助手使科幻風(fēng)格的語(yǔ)音控制成為現(xiàn)實(shí),并通過以下方式工作:
1、首先要說(shuō)一個(gè)喚醒詞或啟動(dòng)語(yǔ)音助手。對(duì)于Amazon Echo這樣的獨(dú)立式設(shè)備,則會(huì)不斷監(jiān)聽喚醒詞,并使用簡(jiǎn)單的語(yǔ)音模式匹配在本地進(jìn)行處理。這就是為什么Alexa僅識(shí)別特定喚醒詞(Alexa、Amazon、Echo和計(jì)算機(jī))的原因;
2、設(shè)備現(xiàn)在連接到云端服務(wù)器,并發(fā)送收聽內(nèi)容的錄音;
3、云服務(wù)器運(yùn)行語(yǔ)音到文本ML模型,將錄制的語(yǔ)音轉(zhuǎn)換為自然語(yǔ)言文本塊;
4、文本則會(huì)借助自然語(yǔ)言處理解析以提取含義;
5、服務(wù)器會(huì)計(jì)算出所請(qǐng)求的內(nèi)容,然后將適當(dāng)?shù)拿罨騼?nèi)容發(fā)送回設(shè)備。
通過將ML模型移到邊緣來(lái)增進(jìn)這種體驗(yàn)的方式顯而易見:語(yǔ)音助手將具有更快的響應(yīng)速度、不需要連接到互聯(lián)網(wǎng)即可嵌入語(yǔ)音控制。也就是說(shuō),被調(diào)用的應(yīng)用程序本身可能需要網(wǎng)絡(luò)連接(例如音樂流媒體服務(wù)
面部識(shí)別
面部識(shí)別是發(fā)展速度最快的AI應(yīng)用之一。這一技術(shù)仍在發(fā)展,一路上小問題不斷。例如,兩年前,亞馬遜旗下的Rekognition深陷種族主義的爭(zhēng)議和指控之中。這套系統(tǒng)在接受了2.5萬(wàn)張圖像的訓(xùn)練后,錯(cuò)誤地將28個(gè)美國(guó)少數(shù)族裔議員識(shí)別為臭名遠(yuǎn)播的罪犯。1
2019年,英國(guó)最大的警察機(jī)關(guān)大都會(huì)警察局 (Met) 對(duì)面部識(shí)別技術(shù)進(jìn)行了早期試驗(yàn),結(jié)果顯示這項(xiàng)技術(shù)在81%的時(shí)候都不準(zhǔn)確。但是,最新的面部識(shí)別系統(tǒng)正在變得越來(lái)越準(zhǔn)確。Met今年年初宣布將在大型活動(dòng)中采用這項(xiàng)技術(shù)掃描已證實(shí)的鬧事者。
許多需要面部識(shí)別的用例都需要這項(xiàng)技術(shù)近乎實(shí)時(shí)地工作。因此,應(yīng)用程序更依賴于將ML模型移動(dòng)到網(wǎng)絡(luò)邊緣。Met所采用的系統(tǒng)基于NEC NeoFace Watch,它是完全獨(dú)立的設(shè)備,并具備實(shí)時(shí)工作能力。NEC的技術(shù)還瞄準(zhǔn)了其他幾個(gè)市場(chǎng),包括零售、企業(yè)活動(dòng)、節(jié)日和其他大型活動(dòng)以及交通運(yùn)輸。
實(shí)時(shí)監(jiān)控
重工業(yè)和采礦業(yè)依賴于極其龐大和昂貴的機(jī)械。如果這種機(jī)器出現(xiàn)意外停機(jī),企業(yè)可能蒙受數(shù)以百萬(wàn)計(jì)的損失。例如,許多采礦作業(yè)都依賴于巨型大功率泵來(lái)保持巷道無(wú)水,并將開采出的泥漿泵送至選礦廠。如果這些泵當(dāng)中有一臺(tái)出現(xiàn)災(zāi)難性故障,則整個(gè)運(yùn)營(yíng)都將中斷。因此,礦業(yè)公司在AI系統(tǒng)中投入巨資,以期借助這些系統(tǒng)提前預(yù)測(cè)潛在的故障。
目前,這些系統(tǒng)通?;趶脑O(shè)備上安裝的物聯(lián)網(wǎng)傳感器傳輸數(shù)據(jù)。然后,數(shù)據(jù)會(huì)被集中處理,并將任何必要的警告回傳到相應(yīng)的操作人員。但是,礦山和施工工地的范圍可能達(dá)到數(shù)十公里,通常地形險(xiǎn)惡,因此將ML模型直接集成到邊緣設(shè)備中將簡(jiǎn)化整個(gè)過程。
在邊緣運(yùn)行AI和ML模型需要什么?
將AI轉(zhuǎn)移到網(wǎng)絡(luò)邊緣需要三樣?xùn)|西:合適的硬件、新工具和用于創(chuàng)建ML模型的新范式。下面我們將逐一進(jìn)行介紹。
經(jīng)過優(yōu)化的硬件
如前文所討論的那樣,ML模型通常依賴于大量的并行運(yùn)算。本質(zhì)上講,它們需要原始的計(jì)算能力。但是,在算力和設(shè)備消耗的實(shí)際功率之間始終要進(jìn)行權(quán)衡與取舍。要將ML模型推向邊緣,需要消耗功率盡可能少的設(shè)備。當(dāng)需要嵌入設(shè)備時(shí)更是如此。幸運(yùn)的是,現(xiàn)在有各種各樣的高性能、低功耗MCU。
合適的工具
接下來(lái)需要合適的工具鏈以在微控制器上運(yùn)行ML模型。絕大多數(shù)ML框架被設(shè)計(jì)在64位Intel系列的CPU或GPU上運(yùn)行。相比之下,所有合適的微控制器都具有32位精簡(jiǎn)指令集架構(gòu),例如ARM Cortex系列的MCU。但是,TensorFlow Lite等ML框架的開發(fā)使ML模型可以在此類MCU上運(yùn)行。
一次建模,即可隨處運(yùn)行
最后一塊拼圖是創(chuàng)建和運(yùn)行ML模型的不同范式。這可以用“一次建模,即可隨處運(yùn)行”這句話來(lái)概括。顧名思義:先創(chuàng)建模型(通常使用大功率的經(jīng)ML優(yōu)化的機(jī)器),然后使用工具鏈將其轉(zhuǎn)換為可以在任何微控制器上運(yùn)行的代碼。遺憾的是,這樣也損失了從持續(xù)學(xué)習(xí)或強(qiáng)化學(xué)習(xí)中受益的能力。
權(quán)衡
下表列出了在邊緣模型上運(yùn)行ML模型時(shí)所做出的一些權(quán)衡。但愿它能提供一些有助于確定是否將您的下一個(gè)AI項(xiàng)目移至最前沿的指引。
特性 | 在數(shù)據(jù)中心 | 在邊緣 |
實(shí)時(shí) | 否 | 是 |
持續(xù)學(xué)習(xí) | 是 | 否 |
可嵌入 | 否 | 是 |
需要網(wǎng)絡(luò)? | 是 | 否 |
強(qiáng)化學(xué)習(xí) | 是 | 否 |
模型是否齊全? | 是 | 否 |
結(jié)論
將ML模型推向邊緣,實(shí)現(xiàn)了AI的新用例,從而有望帶來(lái)可嵌入式AI的革命。這些在MCU上運(yùn)行ML模型所需的MCU硬件和工具的發(fā)展,均為這類技術(shù)的擴(kuò)展奠定了基礎(chǔ)。
審核編輯:何安
-
人工智能
+關(guān)注
關(guān)注
1806文章
48984瀏覽量
248899 -
機(jī)器學(xué)習(xí)
+關(guān)注
關(guān)注
66文章
8500瀏覽量
134506
發(fā)布評(píng)論請(qǐng)先 登錄
儲(chǔ)能裝上AI大腦,破解全生命周期收益困局
【「零基礎(chǔ)開發(fā)AI Agent」閱讀體驗(yàn)】+讀《零基礎(chǔ)開發(fā)AI Agent》掌握扣子平臺(tái)開發(fā)智能體方法
精選好文!噪聲系數(shù)測(cè)量的三種方法

全面擁抱AI,AI賦能設(shè)備資產(chǎn)管理 歡迎一起探討 4001004168 @中設(shè)智控 #資產(chǎn)管理
AI電力需求激增,儲(chǔ)能如何解決 “吃電” 問題?
啟明智顯AI服務(wù)機(jī)器人解決方案:智能硬件方案的佼佼者

評(píng)論