一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

人工智能物聯(lián)網(wǎng)的基本范式

安富利 ? 來源:安富利 ? 作者:安富利 ? 2021-05-07 17:09 ? 次閱讀

人工智能AI)在很多人眼里是,只是一種科幻片中不明覺厲的存在,而與普通人的生活之間隔著很遠的距離。但是這樣的局面正在被改變,在未來5-10年中,AI將會以超乎我們想象的速度快速滲透到我們生活的方方面面。為什么這么講?一起隨我們往下看。

人工智能物聯(lián)網(wǎng)的基本范式

之所以我們與AI之間會有“距離感”,主要是因為以前玩AI是一件比較奢侈的事。這種“奢侈”主要體現(xiàn)在,實現(xiàn)AI所依賴的機器學習(ML),在其訓練和推理的過程中對算力有非常高的要求。為了應對這樣的挑戰(zhàn),通過云計算集中算力做數(shù)據(jù)處理,也就成為了實現(xiàn)機器學習的一個經(jīng)典方法。

但是到了物聯(lián)網(wǎng)時代,這樣的模式受到了挑戰(zhàn)——集中式云計算帶寬和存儲資源消耗大、實時數(shù)據(jù)傳輸消耗電量多、數(shù)據(jù)在終端和云端之間傳輸延遲長、數(shù)據(jù)傳輸和云端集中存儲過程中安全風險大。這些弊端讓人們認識到單純的云計算不是包打天下的萬能藥。

因此,邊緣計算作為經(jīng)典云計算的補充,越來越得到大家的重視。按照邊緣計算的定義,將大部分計算任務放在邊緣設備上直接進行處理,而只在必要的時候?qū)⒁恍┙?jīng)過預處理的數(shù)據(jù)傳輸至云端進行“精加工”,這樣既能提升邊緣端實時響應的速度和智能化水平,又能為網(wǎng)絡傳輸通路和云端數(shù)據(jù)中心減負,因此這樣的混合計算模式顯然可以完美地堅決傳統(tǒng)云計算的痛點。

這種計算架構(gòu)的變遷,也對機器學習的模式產(chǎn)生了影響,使其從以計算為中心的模式向以數(shù)據(jù)為中心的模式轉(zhuǎn)變。這兩種模式中,前者是將機器學習的訓練和推理都放在云端數(shù)據(jù)中心中完成,而后者則是由云端完成模型的訓練,而將推理放在邊緣設備上完成,這也就形成了人工智能物聯(lián)網(wǎng)(AIoT)實施的基本范式。

MCU擴展機器學習的疆界

顯而易見,邊緣計算使得機器學習的疆界大為擴展,使其從數(shù)據(jù)中心的機房走向了更多樣性的網(wǎng)絡邊緣智能。但對于物聯(lián)網(wǎng)應用來講,這似乎還不夠。因為在邊緣設備上進行推理,仍然需要相對強悍的算力,這通常需要包含ML協(xié)處理器在內(nèi)的較為復雜的異構(gòu)微處理器來實現(xiàn)加速,如此的配置在嵌入式領域已經(jīng)算是很“高端”的了。僅此一條,就會將不少對于功耗、成本、實時性敏感的應用關在機器學習的門外。

因此,機器學習想要繼續(xù)開疆擴土,一個主攻方向就是要讓資源更簡單、算力更有限的微控制器(MCU)也能夠跑得了、玩得起機器學習。IC Insights的研究數(shù)據(jù)顯示,2018年全球MCU的出貨量為281億顆,到2023年將這個數(shù)字將增長到382億顆,而全球的MCU存量將數(shù)以千億計,誰要是能夠讓如此量級的設備玩轉(zhuǎn)機器學習,其前途和錢途都將是不可限量的!

但對于任何一個夢想來說,現(xiàn)實往往顯得比較“骨感”。將機器學習部署到MCU運行,就好像是要將一只大象塞進冰箱,而這個答案絕對不是一句腦筋急轉(zhuǎn)彎的玩笑話,而是需要在技術(shù)從兩個維度上去仔細考量。

為機器學習模型瘦身

第一個維度,就是要考慮如何為ML模型這只“大象”進行“瘦身”,也就是說要發(fā)展出相應的技術(shù),能夠在微控制器上部署、運行“小型化”的機器學習推理模型。這種瘦身后的模型,需要滿足的條件包括:

運行模型的終端功耗一般在mW級別,甚至更低;

占用的內(nèi)存一般要在幾百kB以下;

推理時間為ms級別,一般需要在1s內(nèi)完成。

為了實現(xiàn)這樣的目標,TinyML技術(shù)應運而生。顧名思義,這就是一種能夠讓ML模型“變小”的技術(shù)。與上文提到的AIoT機器學習的基本范式一樣,TinyML也是要在云端收集數(shù)據(jù)并進行訓練,而不同之處則在于訓練后模型的優(yōu)化和部署——為了適應MCU有限的計算資源,TinyML必須對模型進行“深度壓縮”,通過模型的蒸餾(Distillation)、量化(Quantization)、編碼(Encoding)、編譯(Compilation)一系列操作后才能部署到邊緣終端上。

其中,一些關鍵的技術(shù)包括:

蒸餾:是指在訓練后通過剪枝(pruning)和知識蒸餾的技術(shù)手段,對模型進行更改,以創(chuàng)建更緊湊的表示形式。

量化:在模型蒸餾后,通過量化實現(xiàn)以更少位數(shù)的數(shù)據(jù)類型近似表示32位浮點型數(shù)據(jù),在可接受的精度損失范圍之內(nèi)減少模型尺寸大小、內(nèi)存消耗并加快模型推理速度。

編碼:就是通過更有效的編碼方式(如霍夫曼編碼)來存儲數(shù)據(jù),進一步減小模型規(guī)模。

編譯:通過以上方式壓縮好的模型,將被編譯為可被大多MCU使用的C或C++代碼,通過設備上的輕量級網(wǎng)絡解釋器(如TF Lite和TF Lite Micro)運行。

在過去的兩年中,我們已經(jīng)明顯感覺到TinyML技術(shù)在升溫,廠商在該領域的投入也在加碼。根據(jù)Silent Intelligence的預測,未來5年中,TinyML將觸發(fā)超過700億美元的經(jīng)濟價值,并且保持超過27.3%的復合年均增長率。

打造機器學習MCU新物種

把“大象裝進冰箱“,除了要在“大象”(也就是ML模型)身上下功夫,另一個維度上的努力就是要改造“冰箱”,也就是對我們熟悉的MCU進行優(yōu)化和改造,令其能夠符合運行ML的需要。

比如,為了滿足在IoT邊緣設備中實現(xiàn)復雜機器學習功能的需要,Maxim Integrated就推出一款專門的低功耗ML微控制器MAX78000。該器件內(nèi)置Arm Cortex-M4F處理器(100MHz)和32位RISC-V協(xié)處理器(60MHz),以及支持64層網(wǎng)絡深度的卷積神經(jīng)網(wǎng)絡加速器,可在電池供電應用中執(zhí)行AI推理,而僅消耗微焦耳能量。與傳統(tǒng)的軟件方案相比,這種基于硬件加速的方案使得復雜的AI推理能耗降至前者的百分之一,而推理速度則可以快100倍。

預計具有類似ML特性的新物種,將成為未來各家MCU大廠產(chǎn)品路線圖中的重要分支。

本文小結(jié)

綜上所述,與微處理器或者x86等嵌入式計算架構(gòu)相比,MCU具有功耗很低、成本低、開發(fā)周期短、上市快、實時性好、市場體量大等特點,這些特性如果能夠和高能的機器學習結(jié)合在一起,其想象空間無疑是巨大的。

在促成兩者“結(jié)合”的過程中,如果能夠為開發(fā)者提供支持機器學習功能的MCU“新物種”,如果能夠提供一個完整的開發(fā)工具鏈,讓ML模型的優(yōu)化和部署更順手,那么把機器學習這只“大象”放進MCU的“冰箱”,將成為信手拈來的輕松事。

更重要的是,這樣的趨勢剛剛萌芽,你完全有機會成為一只early bird,在這個全新的領域中自由的飛翔。

原文標題:如何把機器學習這只“大象”,放進MCU的“冰箱”?

文章出處:【微信公眾號:安富利】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

責任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • mcu
    mcu
    +關注

    關注

    146

    文章

    17734

    瀏覽量

    358552
  • 人工智能
    +關注

    關注

    1804

    文章

    48477

    瀏覽量

    245174
  • 機器學習
    +關注

    關注

    66

    文章

    8481

    瀏覽量

    133876

原文標題:如何把機器學習這只“大象”,放進MCU的“冰箱”?

文章出處:【微信號:AvnetAsia,微信公眾號:安富利】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    NXP技術(shù)白皮書:AIoT人工智能聯(lián)網(wǎng)人工智能與現(xiàn)實世界相連

    ? 分析師將人工智能聯(lián)網(wǎng) (AIoT) 大致定義為人工智能 (AI) 與聯(lián)網(wǎng)(IoT)的融合
    的頭像 發(fā)表于 03-28 11:53 ?992次閱讀
    NXP技術(shù)白皮書:AIoT<b class='flag-5'>人工智能</b><b class='flag-5'>物</b><b class='flag-5'>聯(lián)網(wǎng)</b> 將<b class='flag-5'>人工智能</b>與現(xiàn)實世界相連

    聯(lián)網(wǎng)+人工智能的無限可能

    一、技術(shù)優(yōu)勢: 智能化決策:聯(lián)網(wǎng)通過感知層采集大量實時數(shù)據(jù),而人工智能則通過數(shù)據(jù)分析和模式識別,為這些數(shù)據(jù)提供深層次的洞察。AI可以基于大量的實時數(shù)據(jù)做出
    的頭像 發(fā)表于 02-21 17:53 ?297次閱讀

    宇樹科技在聯(lián)網(wǎng)方面

    人工智能算法優(yōu)化:宇樹科技不斷優(yōu)化其機器人的人工智能算法,使其能夠在聯(lián)網(wǎng)環(huán)境中更好地進行智能決策。通過機器學習、深度學習等技術(shù),機器人
    發(fā)表于 02-04 06:48

    聯(lián)網(wǎng)就業(yè)有哪些高薪崗位?

    進行分析和挖掘,提供有價值的信息和見解,以支持決策和業(yè)務發(fā)展。對于數(shù)據(jù)科學和人工智能有深入了解的數(shù)據(jù)分析專家,將迎來更多的高薪崗位機會。 聯(lián)網(wǎng)產(chǎn)品經(jīng)理: 負責對
    發(fā)表于 01-10 16:47

    嵌入式和人工智能究竟是什么關系?

    人工智能應用的實時響應。與此同時,嵌入式系統(tǒng)在邊緣計算和聯(lián)網(wǎng)領域,也為人工智能的應用提供了廣闊的空間。 在邊緣計算中,嵌入式系統(tǒng)能夠?qū)?b class='flag-5'>人工智能
    發(fā)表于 11-14 16:39

    《AI for Science:人工智能驅(qū)動科學創(chuàng)新》第6章人AI與能源科學讀后感

    幸得一好書,特此來分享。感謝平臺,感謝作者。受益匪淺。 在閱讀《AI for Science:人工智能驅(qū)動科學創(chuàng)新》的第6章后,我深刻感受到人工智能在能源科學領域中的巨大潛力和廣泛應用。這一章詳細
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動科學創(chuàng)新》第4章-AI與生命科學讀后感

    很幸運社區(qū)給我一個閱讀此書的機會,感謝平臺。 《AI for Science:人工智能驅(qū)動科學創(chuàng)新》第4章關于AI與生命科學的部分,為我們揭示了人工智能技術(shù)在生命科學領域中的廣泛應用和深遠影響。在
    發(fā)表于 10-14 09:21

    《AI for Science:人工智能驅(qū)動科學創(chuàng)新》第一章人工智能驅(qū)動的科學創(chuàng)新學習心得

    的效率,還為科學研究提供了前所未有的洞察力和精確度。例如,在生物學領域,AI能夠幫助科學家快速識別基因序列中的關鍵變異,加速新藥研發(fā)進程。 2. 跨學科融合的新范式 書中強調(diào),人工智能的應用促進了多個
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應用前景分析

    RISC-V在人工智能圖像處理領域的應用前景十分廣闊,這主要得益于其開源性、靈活性和低功耗等特點。以下是對RISC-V在人工智能圖像處理應用前景的詳細分析: 一、RISC-V的基本特點 RISC-V
    發(fā)表于 09-28 11:00

    人工智能ai4s試讀申請

    目前人工智能在繪畫對話等大模型領域應用廣闊,ai4s也是方興未艾。但是如何有效利用ai4s工具助力科研是個需要研究的課題,本書對ai4s基本原理和原則,方法進行描訴,有利于總結(jié)經(jīng)驗,擬按照要求準備相關體會材料??茨芊裼兄谌腴T和提高ss
    發(fā)表于 09-09 15:36

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅(qū)動科學創(chuàng)新

    ! 《AI for Science:人工智能驅(qū)動科學創(chuàng)新》 這本書便將為讀者徐徐展開AI for Science的美麗圖景,與大家一起去了解: 人工智能究竟幫科學家做了什么? 人工智能將如何改變我們所生
    發(fā)表于 09-09 13:54

    報名開啟!深圳(國際)通用人工智能大會將啟幕,國內(nèi)外大咖齊聚話AI

    8月28日至30日,2024深圳(國際)通用人工智能大會暨深圳(國際)通用人工智能產(chǎn)業(yè)博覽會將在深圳國際會展中心(寶安)舉辦。大會以“魅力AI·無限未來”為主題,致力于打造全球通用人工智能領域集產(chǎn)品
    發(fā)表于 08-22 15:00

    全球Works With開發(fā)者大會主題演講方向公布!人工智能聯(lián)網(wǎng)的變革性融合是主要焦點

    揭示聯(lián)網(wǎng)與AI人工智能的變革性融合
    的頭像 發(fā)表于 08-19 17:04 ?504次閱讀

    FPGA在人工智能中的應用有哪些?

    FPGA(現(xiàn)場可編程門陣列)在人工智能領域的應用非常廣泛,主要體現(xiàn)在以下幾個方面: 一、深度學習加速 訓練和推理過程加速:FPGA可以用來加速深度學習的訓練和推理過程。由于其高并行性和低延遲特性
    發(fā)表于 07-29 17:05

    5G智能聯(lián)網(wǎng)課程之Aidlux下人工智能開發(fā)(SC171開發(fā)套件V2)

    5G智能聯(lián)網(wǎng)課程之Aidlux下人工智能開發(fā)(SC171開發(fā)套件V2) 課程類別 課程名稱 視頻課程時長 視頻課程鏈接 課件鏈接 人工智能
    發(fā)表于 05-10 16:46