一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

簡述OpenVINO? + ResNet實現(xiàn)圖像分類

英特爾物聯(lián)網(wǎng) ? 來源:英特爾物聯(lián)網(wǎng) ? 作者:英特爾物聯(lián)網(wǎng) ? 2021-05-18 09:23 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

推理引擎(IE)應(yīng)用開發(fā)流程

與相關(guān)函數(shù)介紹

通過OpenVINO的推理引擎跟相關(guān)應(yīng)用集成相關(guān)深度學(xué)習(xí)模型的應(yīng)用基本流程如下:

3f4a03ea-b4ff-11eb-bf61-12bb97331649.png

圖-1

從圖-1可以看到只需要七步就可以完成應(yīng)用集成,實現(xiàn)深度學(xué)習(xí)模型的推理預(yù)測,各步驟中相關(guān)的API函數(shù)支持與作用解釋如下:

Step 1:

InferenceEngine::Core // IE對象

Step 2:

Core.ReadNetwork(xml/onnx)輸入的IR或者onnx格式文件,返回CNNNetwork對象

Step 3:

InferenceEngine::InputsDataMap, InferenceEngine::InputInfo, // 模型輸入信息
InferenceEngine::OutputsDataMap // 模型輸出信息

使用上述兩個相關(guān)輸入與輸出對象就可以設(shè)置輸入的數(shù)據(jù)類型與精度,獲取輸入與輸出層的名稱。

Step 4:

ExecutableNetwork LoadNetwork (
const CNNNetwork &network,
const std::string &deviceName,
const std::map< std::string, std::string > &config={}
)

通過Core的LoadNetwork方法生成可執(zhí)行的網(wǎng)絡(luò),如果你有多個設(shè)備,就可以創(chuàng)建多個可執(zhí)行的網(wǎng)絡(luò)。其參數(shù)解釋如下:

network 參數(shù)表示step2加載得到CNNNetwork對象實例

deviceName表示模型計算所依賴的硬件資源,可以為CPUGPU、 FPGA、 FPGA、MYRIAD

config默認為空

InferRequest InferenceEngine::CreateInferRequest()

表示從可執(zhí)行網(wǎng)絡(luò)創(chuàng)建推理請求。

Step 5:

根據(jù)輸入層的名稱獲取輸入buffer數(shù)據(jù)緩沖區(qū),然后把輸入圖像數(shù)據(jù)填到緩沖區(qū),實現(xiàn)輸入設(shè)置。其中根據(jù)輸入層名稱獲取輸入緩沖區(qū)的函數(shù)為如下:

Blob::Ptr GetBlob (
const std::string &name // 輸入層名稱
)

注意:返回包含輸入層維度信息,支持多個輸入層數(shù)據(jù)設(shè)置!

Step 6:

推理預(yù)測,直接調(diào)用推理請求的InferRequest.infer()方法即可,該方法無參數(shù)。

Step 7:

調(diào)用InferRequest的GetBlob()方法,使用參數(shù)為輸出層名稱,就會得到網(wǎng)絡(luò)的輸出預(yù)測結(jié)果,根據(jù)輸出層維度信息進行解析即可獲取輸出預(yù)測信息與顯示。

圖像分類與ResNet網(wǎng)絡(luò)

圖像分類是計算機視覺的關(guān)鍵任務(wù)之一,關(guān)于圖像分類最知名的數(shù)據(jù)集是ImageNet,包含了自然場景下大量各種的圖像數(shù)據(jù),支持1000個類別的圖像分類。OpenVINO在模型庫的public中有ResNet模型1000個分類的預(yù)訓(xùn)練模型支持,它們主要是:

- resnest-18-pytorch

- resnest-34-pytorch

- resnest-50-pytorch

- resnet-50-tf

其中18、34、50表示權(quán)重層,pytorch表示模型來自pytorch框架訓(xùn)練生成、tf表示tensorflow訓(xùn)練生成。ResNet系列網(wǎng)絡(luò)的詳細說明如下:

406b3d52-b4ff-11eb-bf61-12bb97331649.png

圖-2(來自《Deep Residual Learning for Image Recognition》論文)

我們以ResNet18-pytorch的模型為例,基于Pytorch框架我們可以很輕松的把它轉(zhuǎn)換為ONNX格式文件。然后使用Netron工具打開,可以看到網(wǎng)絡(luò)的輸入圖示如下:

40f2157a-b4ff-11eb-bf61-12bb97331649.png

圖-3

查看網(wǎng)絡(luò)的輸出:

40fe8af8-b4ff-11eb-bf61-12bb97331649.png

圖-4

這樣我們很清楚的知道網(wǎng)絡(luò)的輸入與輸出層名稱,輸入數(shù)據(jù)格式與輸出數(shù)據(jù)格式,其中輸入數(shù)據(jù)格式NCHW中的N表示圖像數(shù)目,這里是1、C表示圖像通道數(shù),這里輸入的是彩色圖像,通道數(shù)為3、H與W分別表示圖像的高與寬,均為224。在輸出格式中1x1000中1表示圖像數(shù)目、1000表示預(yù)測的1000個分類的置信度數(shù)據(jù)。

程序?qū)崿F(xiàn)的基本流程與步驟

前面已經(jīng)介紹了IE SDK相關(guān)函數(shù),圖像分類模型ResNet18的輸入與輸出格式信息?,F(xiàn)在我們就可以借助IE SDK來完成一個完整的圖像分類模型的應(yīng)用部署了,根據(jù)前面提到的步驟各步的代碼實現(xiàn)與解釋如下:

1. 初始化IE

InferenceEngine::Core ie;

2. 加載ResNet18網(wǎng)絡(luò)

InferenceEngine::CNNNetwork network = ie.ReadNetwork(onnx);
InferenceEngine::InputsDataMap inputs = network.getInputsInfo();
InferenceEngine::OutputsDataMap outputs = network.getOutputsInfo();

3. 獲取輸入與輸出名稱、設(shè)置輸入與輸出數(shù)據(jù)格式

std::string input_name = "";
for (auto item : inputs) {
input_name = item.first;
auto input_data = item.second;
input_data->setPrecision(Precision::FP32);
input_data->setLayout(Layout::NCHW);
input_data->getPreProcess().setColorFormat(ColorFormat::RGB);
std::cout << "input name: " << input_name << std::endl;
}

std::string output_name = "";
for (auto item : outputs) {
output_name = item.first;
auto output_data = item.second;
output_data->setPrecision(Precision::FP32);
std::cout << "output name: " << output_name << std::endl;
}

4. 獲取推理請求對象實例

auto executable_network = ie.LoadNetwork(network, "CPU");
auto infer_request = executable_network.CreateInferRequest();

5. 輸入圖像數(shù)據(jù)設(shè)置

auto input = infer_request.GetBlob(input_name);
size_t num_channels = input->getTensorDesc().getDims()[1];
size_t h = input->getTensorDesc().getDims()[2];
size_t w = input->getTensorDesc().getDims()[3];
size_t image_size = h*w;
cv::Mat blob_image;
cv::resize(src, blob_image, cv::Size(w, h));
cv::cvtColor(blob_image, blob_image, cv::COLOR_BGR2RGB);
blob_image.convertTo(blob_image, CV_32F);
blob_image = blob_image / 255.0;
cv::subtract(blob_image, cv::Scalar(0.485, 0.456, 0.406), blob_image);
cv::divide(blob_image, cv::Scalar(0.229, 0.224, 0.225), blob_image);

// HWC =》NCHW
float* data = static_cast(input->buffer());for (size_t row = 0; row < h; row++) { ? ?for (size_t col = 0; col < w; col++) { ? ? ? ?for (size_t ch = 0; ch < num_channels; ch++) { ? ? ? ? ? ?data[image_sizech + row*w + col] = blob_image.at<:vec3f>(row, col)[ch];
}
}
}

在輸入數(shù)據(jù)部分OpenCV導(dǎo)入的圖像三通道順序是BGR,所以要轉(zhuǎn)換為RGB,resize到224x224大小、像素值歸一化為0~1之間、然后要減去均值(0.485, 0.456, 0.406),除以方差(0.229, 0.224, 0.225)完成預(yù)處理之后再填充到Blob緩沖區(qū)中區(qū)。

6. 推理

infer_request.Infer();

7. 解析輸出與顯示結(jié)果

auto output = infer_request.GetBlob(output_name);
const float* probs = static_cast ::value_type*>(output->buffer());
const SizeVector outputDims = output->getTensorDesc().getDims();
std::cout << outputDims[0] << "x" << outputDims[1] << std::endl;
float max = probs[0];
int max_index = 0;
for (int i = 1; i < outputDims[1]; i++) {
if (max < probs[i]) {
max = probs[i];
max_index = i;
}
}<:fp32>

cv::putText(src, labels[max_index], cv::Point(50, 50), cv::FONT_HERSHEY_SIMPLEX, 1.0, cv::Scalar(0, 0, 255), 2, 8);
cv::imshow("輸入圖像", src);
cv::waitKey(0);

解析部分代碼首先通過輸出層名稱獲取輸出數(shù)據(jù)對象BLOB,然后根據(jù)輸出格式1x1000,尋找最大值對應(yīng)的index,根據(jù)索引index得到對應(yīng)的分類標(biāo)簽,然后通過OpenCV圖像輸出分類結(jié)果。

運行結(jié)果

圖-5(來自ImageNet測試集)

這樣我們就使用OpenVINO 的推理引擎相關(guān)的SDK函數(shù)支持成功部署ResNet18模型,并預(yù)測了一張輸入圖像。你可以能還想知道除了圖像分類模型,OpenVINO 推理引擎在對象檢測方面都有哪些應(yīng)用,我們下次繼續(xù)…….

編輯:jq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 函數(shù)
    +關(guān)注

    關(guān)注

    3

    文章

    4381

    瀏覽量

    64948
  • 代碼
    +關(guān)注

    關(guān)注

    30

    文章

    4900

    瀏覽量

    70802
  • OpenCV
    +關(guān)注

    關(guān)注

    32

    文章

    642

    瀏覽量

    42938
  • SDK
    SDK
    +關(guān)注

    關(guān)注

    3

    文章

    1077

    瀏覽量

    49157

原文標(biāo)題:OpenVINO? + ResNet實現(xiàn)圖像分類

文章出處:【微信號:英特爾物聯(lián)網(wǎng),微信公眾號:英特爾物聯(lián)網(wǎng)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    無法使用OpenVINO?在 GPU 設(shè)備上運行穩(wěn)定擴散文本到圖像的原因?

    OpenVINO? GPU 設(shè)備上使用圖像大小 (1024X576) 運行穩(wěn)定擴散文本到圖像,并收到錯誤消息: RuntimeError: Exception from
    發(fā)表于 06-25 06:36

    為什么無法通過“pip install openvino-dev==2025.0.0”安裝 2025.0 OpenVINO??

    通過“pip install openvino-dev==2025.0.0OpenVINO? 2025.0 安裝。 收到的錯誤: ERROR: No matching distribution found for openvino
    發(fā)表于 06-23 08:13

    在友晶LabCloud平臺上使用PipeCNN實現(xiàn)ImageNet圖像分類

    利用深度卷積神經(jīng)網(wǎng)絡(luò)(CNN)進行圖像分類是通過使用多個卷積層來從輸入數(shù)據(jù)中提取特征,最后通過分類層做決策來識別出目標(biāo)物體。
    的頭像 發(fā)表于 04-23 09:42 ?412次閱讀
    在友晶LabCloud平臺上使用PipeCNN<b class='flag-5'>實現(xiàn)</b>ImageNet<b class='flag-5'>圖像</b><b class='flag-5'>分類</b>

    基于RV1126開發(fā)板實現(xiàn)自學(xué)習(xí)圖像分類方案

    在RV1126開發(fā)板上實現(xiàn)自學(xué)習(xí):在識別前對物體圖片進行模型學(xué)習(xí),訓(xùn)練完成后通過算法分類得出圖像的模型ID。 方案設(shè)計邏輯流程圖,方案代碼分為分為兩個業(yè)務(wù)流程,主體代碼負責(zé)抓取、合成
    的頭像 發(fā)表于 04-21 13:37 ?11次閱讀
    基于RV1126開發(fā)板<b class='flag-5'>實現(xiàn)</b>自學(xué)習(xí)<b class='flag-5'>圖像</b><b class='flag-5'>分類</b>方案

    基于RV1126開發(fā)板的resnet50訓(xùn)練部署教程

    本教程基于圖像分類算法ResNet50的訓(xùn)練和部署到EASY-EAI-Nano(RV1126)進行說明
    的頭像 發(fā)表于 04-18 15:07 ?491次閱讀
    基于RV1126開發(fā)板的<b class='flag-5'>resnet</b>50訓(xùn)練部署教程

    在Visual Studio中使用OpenVINO? C API時無法讀取網(wǎng)絡(luò)怎么解決?

    使用 OpenVINO C API 加載中間表示 (IR),方法是引用Hello 分類 C 樣本。 使用ie_infer_request_set_blob 時收到的狀態(tài)為 -1(一般錯誤)。
    發(fā)表于 03-07 07:01

    如何部署OpenVINO?工具套件應(yīng)用程序?

    編寫代碼并測試 OpenVINO? 工具套件應(yīng)用程序后,必須將應(yīng)用程序安裝或部署到生產(chǎn)環(huán)境中的目標(biāo)設(shè)備。 OpenVINO?部署管理器指南包含有關(guān)如何輕松使用部署管理器將應(yīng)用程序打包并部署到目標(biāo)主機的詳細信息。 注意:OpenVIN
    發(fā)表于 03-06 08:23

    使用Python API在OpenVINO?中創(chuàng)建了用于異步推理的自定義代碼,輸出張量的打印結(jié)果會重復(fù),為什么?

    使用 Python* API 在 OpenVINO? 中創(chuàng)建了用于異步推理的自定義代碼。 遇到輸出張量的打印結(jié)果會重復(fù)的問題,即使輸入圖像不同。
    發(fā)表于 03-06 07:53

    無法使用API實現(xiàn)NPU與OpenVINO?的內(nèi)存共享怎么辦?

    無法使用 遠程張量 API 實現(xiàn) NPU 與OpenVINO?的內(nèi)存共享。
    發(fā)表于 03-06 07:11

    請問如何使用OpenVINO?生成熱圖?

    是否可以使用 OpenVINO? 實現(xiàn)像 [i]逐層相關(guān)性傳播 或 [i]Grad-CAM 這樣的熱圖生成技術(shù)?
    發(fā)表于 03-06 06:22

    安裝OpenVINO? 2023.2使用pip install openvino-dev命令的開發(fā)工具后報錯怎么解決?

    安裝OpenVINO? 2023.2 使用 pip install openvino-dev 命令的開發(fā)工具。 遇到錯誤: ModuleNotFoundError: 沒有名為 \'distutils\' 的模塊
    發(fā)表于 03-05 08:39

    安裝OpenVINO?工具包穩(wěn)定擴散后報錯,怎么解決?

    已安裝OpenVINO?工具包穩(wěn)定擴散并收到錯誤消息: \"BackendCompilerFailed: openvino_fx raised RuntimeError
    發(fā)表于 03-05 06:56

    高通AI Hub:輕松實現(xiàn)Android圖像分類

    高通AI Hub為開發(fā)者提供了一個強大的平臺,以優(yōu)化、驗證和部署在Android設(shè)備上的機器學(xué)習(xí)模型。這篇文章將介紹如何使用高通AI Hub進行圖像分類的程式碼開發(fā),并提供一個實際的例子來展示其在Android平臺上的應(yīng)用。
    的頭像 發(fā)表于 11-26 01:03 ?936次閱讀
    高通AI Hub:輕松<b class='flag-5'>實現(xiàn)</b>Android<b class='flag-5'>圖像</b><b class='flag-5'>分類</b>

    使用卷積神經(jīng)網(wǎng)絡(luò)進行圖像分類的步驟

    使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)進行圖像分類是一個涉及多個步驟的過程。 1. 問題定義 確定目標(biāo) :明確你想要分類圖像類型,例如貓和狗、不同的植物種類等。 數(shù)據(jù)需求 :確定需要多少數(shù)據(jù)以及
    的頭像 發(fā)表于 11-15 15:01 ?853次閱讀

    基于改進ResNet50網(wǎng)絡(luò)的自動駕駛場景天氣識別算法

    ResNet50網(wǎng)絡(luò)4組模塊內(nèi)加入SE模塊,以便更好地擬合通道間復(fù)雜的魯棒性?;谧詣玉{駛汽車路測圖像數(shù)據(jù)對所提算法進行Python編程實現(xiàn),結(jié)果表明:SE模塊的加入能夠增加算法的魯棒性和準(zhǔn)確性,提高了自動駕駛的天氣識別精度。
    的頭像 發(fā)表于 11-09 11:14 ?1363次閱讀
    基于改進<b class='flag-5'>ResNet</b>50網(wǎng)絡(luò)的自動駕駛場景天氣識別算法