一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Edge AI在深度學(xué)習(xí)應(yīng)用中超越云計算

星星科技指導(dǎo)員 ? 來源:嵌入式計算設(shè)計 ? 作者:Saumitra Jagdale ? 2022-07-10 11:07 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

什么是邊緣人工智能?

Edge AI 在硬件上本地處理和實(shí)施機(jī)器學(xué)習(xí)算法。這種形式的本地計算減少了數(shù)據(jù)傳輸?shù)木W(wǎng)絡(luò)延遲,并解決了一切都發(fā)生在設(shè)備本身上的安全挑戰(zhàn)。

邊緣人工智能的流程

Edge AI 的本地處理并不意味著機(jī)器學(xué)習(xí)模型的訓(xùn)練應(yīng)該在本地進(jìn)行。通常,訓(xùn)練在具有更大計算能力的平臺上進(jìn)行,以處理更大的數(shù)據(jù)集。最后,這個經(jīng)過訓(xùn)練的模型可以部署在系統(tǒng)的處理器或硬件上。該系統(tǒng)具有人工智能加速功能以及用于實(shí)時數(shù)據(jù)處理應(yīng)用程序的部署模型。

隨著對 GPU、NPU、TPU 和 AI 加速器的需求增加,Edge AI 技術(shù)經(jīng)歷了巨大的增長。隨著機(jī)器學(xué)習(xí)和人工智能已成為當(dāng)前情況下的趨勢技術(shù),這種需求是顯而易見的。因此,由于當(dāng)前應(yīng)用程序的需求,Edge AI 在硬件中找到了自己的位置。硬件中對本地高級處理和計算能力的需求解釋了 Edge AI 的重要性。

云 AI 能比邊緣 AI 活得更久嗎?

Cloud AI 通過在云端遠(yuǎn)程提供計算能力來支持硬件處理。由于處理是遠(yuǎn)程進(jìn)行的,因此系統(tǒng)在性能和處理方面更加強(qiáng)大。此外,云計算增加了有關(guān)架構(gòu)和設(shè)計的選項(xiàng)。由于高級處理發(fā)生在云上,它降低了系統(tǒng)硬件功耗的復(fù)雜性。然而,正如引言中所討論的,這些好處是以延遲和安全問題為代價的。

云AI的流程

當(dāng)計算需求非常密集并且需要大量數(shù)據(jù)處理時,云人工智能可以比邊緣人工智能更長壽。如果應(yīng)用程序可以在延遲和安全性方面做出妥協(xié),那么 Cloud AI 是比 Edge AI 更好的選擇。Cloud AI 還可以解決功耗問題。但是,它不能被視為選擇 Cloud AI 而不是 Edge AI 的決定因素。

邊緣人工智能與云人工智能

在 Edge AI 和 Cloud AI 之間進(jìn)行選擇的不確定性主要發(fā)生在機(jī)器學(xué)習(xí)或深度學(xué)習(xí)用例中。由于深度學(xué)習(xí)算法需要密集處理,因此硬件的性能成為一個重要因素。Cloud AI 絕對可以為系統(tǒng)提供更好的性能,但大多數(shù)深度學(xué)習(xí)應(yīng)用程序無法在數(shù)據(jù)傳輸延遲和網(wǎng)絡(luò)安全威脅方面妥協(xié)。因此,對于人工智能應(yīng)用,Edge AI 比 Cloud AI 壽命更長。

如前所述,功耗因素總是會影響邊緣 AI 處理器。這是可以理解的,因?yàn)榉敝氐挠嬎阈枰叩?a target="_blank">電源。但是當(dāng)前的 Edge AI 處理器具有 AI 加速器,可提供更高的性能和更低的功耗。然而,GPU 和 TPU 仍然需要更高的功率,但設(shè)計和電路架構(gòu)的改進(jìn)將克服這個問題。

由于單獨(dú)的云并不是人工智能應(yīng)用程序的絕佳選擇,邊緣和云人工智能的混合可以提供更好的性能??赡軙绊懷舆t的部分處理可以在云上完成,其余部分則在硬件本身上完成。

示例:由于訓(xùn)練后的模型需要根據(jù)實(shí)時數(shù)據(jù)進(jìn)行更新,因此可以在云端完成更新后的訓(xùn)練。但實(shí)時數(shù)據(jù)通過 Edge AI 在硬件上進(jìn)行處理以生成輸出。

因此,處理的劃分帶來了兩種技術(shù)的最佳效果。因此,它可能是 AI 應(yīng)用程序的更好選擇。但是,大多數(shù)應(yīng)用程序都需要更快的實(shí)時更新訓(xùn)練,因此 Edge AI 比 Cloud AI 技術(shù)壽命更長。因此,Edge AI 在深度學(xué)習(xí)應(yīng)用方面正在超越 Cloud AI。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    4949

    瀏覽量

    131321
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    35194

    瀏覽量

    280264
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122824
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    面向AI與機(jī)器學(xué)習(xí)應(yīng)用的開發(fā)平臺 AMD/Xilinx Versal? AI Edge VEK280

    AMD/Xilinx Versal? AI Edge VEK280評估套件是一款面向AI與機(jī)器學(xué)習(xí)應(yīng)用的開發(fā)平臺,專為邊緣計算場景優(yōu)化設(shè)計。
    的頭像 發(fā)表于 04-11 18:33 ?1336次閱讀
    面向<b class='flag-5'>AI</b>與機(jī)器<b class='flag-5'>學(xué)習(xí)</b>應(yīng)用的開發(fā)平臺 AMD/Xilinx Versal? <b class='flag-5'>AI</b> <b class='flag-5'>Edge</b> VEK280

    ST EDGE AI服務(wù)最后一步無法下載工程是怎么回事?

    ST EDGE AI服務(wù)我選擇使用ST提供的模型,使用cube ai 9.0.0,選擇STM32板卡。之后就按照文檔一步一步操作,基準(zhǔn)測試也能運(yùn)行的到結(jié)果(說明云端是生成工程并編譯下
    發(fā)表于 03-13 08:17

    AI Agent 應(yīng)用與項(xiàng)目實(shí)戰(zhàn)》----- 學(xué)習(xí)如何開發(fā)視頻應(yīng)用

    學(xué)習(xí)、自然語言處理(NLP)、計算機(jī)視覺(CV)等先進(jìn)技術(shù)提供的強(qiáng)大的數(shù)據(jù)處理和分析能力。 視頻應(yīng)用開發(fā),AI Agent可以用于視頻內(nèi)
    發(fā)表于 03-05 19:52

    人工智能和機(jī)器學(xué)習(xí)以及Edge AI的概念與應(yīng)用

    與人工智能相關(guān)各種技術(shù)的概念介紹,以及先進(jìn)的Edge AI(邊緣人工智能)的最新發(fā)展與相關(guān)應(yīng)用。 人工智能和機(jī)器學(xué)習(xí)是現(xiàn)代科技的核心技術(shù) 人工智能(AI)和機(jī)器
    的頭像 發(fā)表于 01-25 17:37 ?942次閱讀
    人工智能和機(jī)器<b class='flag-5'>學(xué)習(xí)</b>以及<b class='flag-5'>Edge</b> <b class='flag-5'>AI</b>的概念與應(yīng)用

    AI自動化生產(chǎn):深度學(xué)習(xí)質(zhì)量控制的應(yīng)用

    生產(chǎn)效率、保證產(chǎn)品質(zhì)量方面展現(xiàn)出非凡的能力。阿丘科技「AI干貨補(bǔ)給站」推出《AI自動化生產(chǎn):深度學(xué)習(xí)質(zhì)量控制
    的頭像 發(fā)表于 01-17 16:35 ?702次閱讀
    <b class='flag-5'>AI</b>自動化生產(chǎn):<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>在</b>質(zhì)量控制<b class='flag-5'>中</b>的應(yīng)用

    GPU深度學(xué)習(xí)的應(yīng)用 GPUs圖形設(shè)計的作用

    。 GPU的并行計算能力 GPU最初被設(shè)計用于處理圖形和圖像的渲染,其核心優(yōu)勢在于能夠同時處理成千上萬的像素點(diǎn)。這種并行處理能力使得GPU非常適合執(zhí)行深度學(xué)習(xí)的大規(guī)模矩陣運(yùn)算。
    的頭像 發(fā)表于 11-19 10:55 ?1639次閱讀

    NPU深度學(xué)習(xí)的應(yīng)用

    設(shè)計的硬件加速器,它在深度學(xué)習(xí)的應(yīng)用日益廣泛。 1. NPU的基本概念 NPU是一種專門針對深度學(xué)習(xí)算法優(yōu)化的處理器,它與傳統(tǒng)的CPU和G
    的頭像 發(fā)表于 11-14 15:17 ?1935次閱讀

    pcie深度學(xué)習(xí)的應(yīng)用

    深度學(xué)習(xí)模型通常需要大量的數(shù)據(jù)和強(qiáng)大的計算能力來訓(xùn)練。傳統(tǒng)的CPU計算資源有限,難以滿足深度學(xué)習(xí)
    的頭像 發(fā)表于 11-13 10:39 ?1360次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    人類的學(xué)習(xí)過程,實(shí)現(xiàn)對復(fù)雜數(shù)據(jù)的學(xué)習(xí)和識別。AI大模型則是指模型的參數(shù)數(shù)量巨大,需要龐大的計算資源來進(jìn)行訓(xùn)練和推理。深度
    的頭像 發(fā)表于 10-23 15:25 ?2906次閱讀

    AI大模型圖像識別的優(yōu)勢

    AI大模型圖像識別展現(xiàn)出了顯著的優(yōu)勢,這些優(yōu)勢主要源于其強(qiáng)大的計算能力、深度學(xué)習(xí)算法以及大規(guī)
    的頭像 發(fā)表于 10-23 15:01 ?2452次閱讀

    AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第二章AI for Science的技術(shù)支撐學(xué)習(xí)心得

    for Science的技術(shù)支撐”的學(xué)習(xí)心得,可以從以下幾個方面進(jìn)行歸納和總結(jié): 1. 技術(shù)基礎(chǔ)的深入理解 閱讀第二章的過程,我對于AI for Science所需的技術(shù)基礎(chǔ)有了
    發(fā)表于 10-14 09:16

    AI平臺的優(yōu)勢與應(yīng)用

    AI平臺,作為AI技術(shù)與計算深度融合的產(chǎn)物,正以其獨(dú)特的優(yōu)勢,
    的頭像 發(fā)表于 10-12 09:44 ?704次閱讀

    顯存技術(shù)不斷升級,AI計算如何選擇合適的顯存

    電子發(fā)燒友網(wǎng)報道(文/李彎彎)顯存,是顯卡上用于存儲圖像數(shù)據(jù)、紋理、幀緩沖區(qū)等的內(nèi)存。它的大小直接決定了顯卡能夠同時處理的數(shù)據(jù)量。 ? AI計算,顯存的大小對處理大規(guī)模數(shù)據(jù)集、
    的頭像 發(fā)表于 09-11 00:11 ?4804次閱讀

    AI服務(wù)器:開啟智能計算新時代

    一、AI服務(wù)器的定義與特點(diǎn) AI服務(wù)器的定義 AI服務(wù)器是一種基于
    的頭像 發(fā)表于 08-09 16:08 ?1657次閱讀

    FPGA人工智能的應(yīng)用有哪些?

    定制化的硬件設(shè)計,提高了硬件的靈活性和適應(yīng)性。 綜上所述,F(xiàn)PGA人工智能領(lǐng)域的應(yīng)用前景廣闊,不僅可以用于深度學(xué)習(xí)的加速和計算的加速,還
    發(fā)表于 07-29 17:05