一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于兩種不同代表性SSE的鋰對(duì)稱電池的界面動(dòng)力學(xué)

鋰電聯(lián)盟會(huì)長(zhǎng) ? 來(lái)源:鋰電聯(lián)盟會(huì)長(zhǎng) ? 作者:Chanhee Lee ? 2022-07-14 11:29 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

由于使用鋰(Li)金屬作為負(fù)極的潛力,固態(tài)電池(SSB)吸引了越來(lái)越多研究者的興趣。各種高性能固態(tài)電解質(zhì)(SSE),包括聚合物、硫化物和氧化物的發(fā)現(xiàn)加速了SSB的發(fā)展。在無(wú)機(jī)SSE中,硫化物因其高離子電導(dǎo)率和相對(duì)易于加工而被認(rèn)為是有前途的。盡管取得了這些進(jìn)展,但許多挑戰(zhàn)阻礙了鋰負(fù)極與硫化物SSE的使用。首先,鋰金屬絲(也稱為枝晶或突起)可以在充電過(guò)程中生長(zhǎng)以機(jī)械穿透SSE顆粒,導(dǎo)致短路和電池故障。SSE內(nèi)的缺陷,例如孔隙、晶界和裂紋,會(huì)影響或加劇鋰絲的生長(zhǎng)。其次,許多硫化物SSE在與鋰接觸時(shí)在熱力學(xué)上不穩(wěn)定,導(dǎo)致形成與純SSE不同的結(jié)構(gòu)、化學(xué)和傳輸特性的“界面”。

除了這些挑戰(zhàn)之外,施加到SSB的堆疊壓力在決定其性能方面起著至關(guān)重要的作用。高堆疊壓力可以導(dǎo)致鋰和SSE之間均勻的界面接觸,但同時(shí)也會(huì)導(dǎo)致機(jī)械變形并使鋰通過(guò)SSE顆粒內(nèi)的微孔,從而導(dǎo)致短路。如果堆疊壓力太低,界面接觸不充分,則會(huì)導(dǎo)致脫鋰過(guò)程中形成界面空隙。由于活性材料體積的變化,電池堆疊壓力也可能隨著循環(huán)而變化,這意味著電池內(nèi)的實(shí)際電池堆疊壓力可能與最初施加的壓力不同。此外,對(duì)SSE的加工參數(shù)和密度如何影響SSB與鋰循環(huán)過(guò)程中的動(dòng)態(tài)壓力缺乏了解。因此,有必要研究退化和失效機(jī)制及其與堆疊壓力實(shí)時(shí)演變的相關(guān)性。

【成果簡(jiǎn)介】

鑒于此,美國(guó)佐治亞理工學(xué)院的Matthew T. McDowell教授等人通過(guò)將堆疊壓力的測(cè)量與電化學(xué)相關(guān)聯(lián),研究了基于兩種不同代表性SSE(Li10SnP2S12和Li6PS5Cl)的鋰對(duì)稱電池的界面動(dòng)力學(xué)。這些材料通過(guò)界面形成或鋰絲生長(zhǎng)表現(xiàn)出不同的降解機(jī)制。研究發(fā)現(xiàn)堆疊壓力的演變高度依賴于與鋰接觸的SSE的化學(xué)穩(wěn)定性,并且界面的形成導(dǎo)致電池運(yùn)作過(guò)程中堆疊壓力的降低。鋰細(xì)絲的生長(zhǎng)顯示出不同的堆疊壓力特征,這取決于SSE的加工參數(shù)和密度。這項(xiàng)工作提供了對(duì)這些材料界面演變的新理解,并證明了電化學(xué)機(jī)械測(cè)量對(duì)于促進(jìn)對(duì)SSB的理解的價(jià)值。相關(guān)研究成果以“Stack Pressure Measurements to Probe the Evolution of the Lithium-Solid-State Electrolyte Interface”為題發(fā)表在ACS Energy Letters上。

【核心內(nèi)容】

具有集成力傳感器的定制固態(tài)電池組件如圖1a所示。通過(guò)在不同壓力下壓縮SSE粉末以形成壓實(shí)的顆粒,然后將鋰箔附著在顆粒的兩側(cè),將具有鋰對(duì)稱電池組裝在聚醚醚酮(PEEK)模具內(nèi)。將電池堆放置在力傳感器上,并通過(guò)擰緊圖1a中電池組件頂部的四個(gè)螺母單軸壓至所需的初始電池堆疊壓力,然后在電化學(xué)循環(huán)過(guò)程中使用力傳感器測(cè)量電池堆疊壓力變化。研究中使用了兩種不同的SSE材料:Li10SnP2S12(LSPS)和Li6PS5Cl (LPSC)。其中,LSPS能夠形成一個(gè)厚的中間相,限制鋰絲的生長(zhǎng),而LPSC則形成一個(gè)薄且鈍化的中間相,允許鋰絲生長(zhǎng)(圖1a)。

為了了解開(kāi)路條件下堆疊壓力的演變,圖1b顯示了兩種包含LSPS和LPSC的不同對(duì)稱電池的堆疊壓力分布和堆疊壓力的時(shí)間導(dǎo)數(shù)。兩個(gè)電池的初始堆疊壓力均為30 MPa,LSPS電池的堆疊壓力在20小時(shí)實(shí)驗(yàn)中降至24.8 MPa(紅色),而LPSC電池僅降至27.6 MPa(藍(lán)色)。這些電池在開(kāi)路時(shí)的堆壓降低是由于:(1)電池組件的松弛,(2)SSE隨著時(shí)間的變形,(3)鋰金屬的塑性變形和流動(dòng),以及(4)形成化學(xué)中間相。通過(guò)分析實(shí)驗(yàn)中每3小時(shí)收集得到的電化學(xué)阻抗譜(EIS)數(shù)據(jù),可以進(jìn)一步了解界面的形成(圖1c、d)。LSPS電池的總電阻在開(kāi)路18小時(shí)后從47.9 Ω cm-2增加到147.6 Ω cm-2,而LPSC電池的總電阻相對(duì)恒定,表明LSPS中的中間相的形成導(dǎo)致了阻抗的增長(zhǎng)。

47f7d8fa-0323-11ed-ba43-dac502259ad0.png

圖1. (a)固態(tài)電池組件的示意圖(左)以及基于Li10SnP2S12(LSPS)和Li6PS5Cl(LPSC)的對(duì)稱電池(右)的不同降解機(jī)制的說(shuō)明。(b)基于LSPS(紅色)和LPSC(藍(lán)色)的兩個(gè)不同對(duì)稱電池在加壓到30 MPa的初始堆疊壓力并保持在開(kāi)路狀態(tài)下的堆疊壓力演變。(c)LSPS(紅色)和LPSC(藍(lán)色)電池保持開(kāi)路狀態(tài)下的總電阻隨時(shí)間變化的圖。(d)在(b)中的開(kāi)路保持期間,每個(gè)電池每隔3小時(shí)測(cè)量得到的電化學(xué)阻抗譜。(b-d)中使用的所有顆粒在制備過(guò)程中均以125 MPa壓實(shí)。

為了研究LSPS對(duì)稱電池中堆疊壓力演變與電化學(xué)之間的關(guān)系,使電池在開(kāi)路狀態(tài)保持10小時(shí)后在0.5 mA cm-2的電流密度下進(jìn)行充放電。圖2a顯示了來(lái)自對(duì)稱式LSPS電池的電壓曲線以及測(cè)量的堆疊壓力曲線(實(shí)線)。圖2a還顯示了具有相同數(shù)量Li的LSPS電池保持在開(kāi)路狀態(tài)下的堆疊壓力數(shù)據(jù)(虛線),以進(jìn)行比較。在最初的10小時(shí)開(kāi)路保持期間,兩個(gè)電池都顯示出類(lèi)似的堆疊壓力下降。然而,在施加電流后,與保持在開(kāi)路狀態(tài)的電池相比,在接下來(lái)的約21小時(shí)內(nèi),電池堆疊壓力以更快的速度下降。大約31小時(shí)后,施加電流的電池的電壓迅速極化到1 V。隨著這種極化的發(fā)生,堆疊壓力曲線的斜率降低,并再次變得與保持開(kāi)路的電池相似。圖2b顯示了通過(guò)EIS從每個(gè)電池中測(cè)量的總電阻。在開(kāi)路保持10小時(shí)后,兩個(gè)電池的阻抗幾乎相同,但是當(dāng)電流施加到一個(gè)電池時(shí),總電阻開(kāi)始發(fā)散。隨著所施加電流電池的電壓極化到1 V,總電阻顯著增加。

相關(guān)的電化學(xué)堆疊壓力演變可分為三個(gè)部分,如圖2b所示。當(dāng)兩個(gè)電池都處于開(kāi)路(第1部分)時(shí),它們表現(xiàn)出相同的堆疊壓力降低和總電阻增加。在施加電流時(shí)(第2部分),由于電化學(xué)界面的形成,堆疊壓力下降得更快,導(dǎo)致阻抗增加。圖2c中充放電后的電池陰極界面的橫截面SEM圖像顯示界面厚度約為350 μm,比圖1b中保持在開(kāi)路處的電池厚得多。圖2d中的SEM圖像突出了中間相與原始LSPS形貌的差異。在阻抗/堆疊壓力演變的第3部分(圖2b),電池極化大幅增加,堆疊壓力的降低趨于穩(wěn)定(圖2a)。這個(gè)過(guò)程可能主要是由于空隙形成引起的接觸損失和由于實(shí)驗(yàn)過(guò)程中大量鋰穿透導(dǎo)致的鋰金屬局部耗盡而引起的。

48265928-0323-11ed-ba43-dac502259ad0.png

圖2. (a)兩個(gè)LSPS對(duì)稱電池的電壓曲線(紅色)和堆疊壓力曲線(藍(lán)色)。其中一個(gè)電池在開(kāi)路保持10小時(shí)后在0.5 mA cm-2下充放電(實(shí)線),另一個(gè)電池在整個(gè)實(shí)驗(yàn)中保持開(kāi)路(虛線)。(b)從EIS數(shù)據(jù)中提取的施加電流的電池(藍(lán)色)和保持開(kāi)路的電池(黑色)的總電阻隨時(shí)間變化的圖。(c)使用二次電子(SE)檢測(cè)器(左)和背散射電子(BSE)檢測(cè)器(右),在施加電流的情況下,來(lái)自電池的陰極鋰電極和LSPS的橫截面SEM圖像。(d)電池中反應(yīng)的中間相(左)和未反應(yīng)的LSPS(右)之間邊界的放大SEM圖像。

作者進(jìn)一步研究了不同初始堆壓強(qiáng)度對(duì)LSPS對(duì)稱電池中堆壓/電化學(xué)演變的影響(圖3)。在這些實(shí)驗(yàn)中,0.5 mA cm-2的電流密度被間歇施加3小時(shí),電流周期之間保持3小時(shí)開(kāi)路。圖3a、c顯示了施加30 MPa堆疊壓力時(shí)兩個(gè)電池的電壓曲線、堆疊壓力演變和總電阻,其中一個(gè)間歇性地施加電流,另一個(gè)保持開(kāi)路。圖3a、c中的結(jié)果顯示出與圖2類(lèi)似的行為,其中由于電化學(xué)界面的形成,堆疊壓力顯著降低,最終導(dǎo)致影響極化的接觸面積的減少。與這種行為相反,具有較低初始堆疊壓力(5 MPa)的LSPS對(duì)稱電池在間歇電流應(yīng)用期間顯示出立即的極化,而堆疊壓力與保持開(kāi)路的相同電池沒(méi)有顯著偏差(圖3b、d)。立即的極化可能是由于界面接觸不良,因?yàn)檩^低的堆疊壓力無(wú)法使Li變形以產(chǎn)生足夠的界面接觸。不良的界面接觸導(dǎo)致高度局部化的電流和在接觸點(diǎn)處形成界面,這將導(dǎo)致極化增加。在前3小時(shí)開(kāi)路期間,電池的初始堆壓降約為0.6 MPa(圖3b),遠(yuǎn)小于施加30 MPa堆壓時(shí)(圖2a)。圖3e、f中示意性地說(shuō)明了具有高和低堆疊壓力的不同界面演化場(chǎng)景。

486da21a-0323-11ed-ba43-dac502259ad0.png

圖3. (a)來(lái)自兩個(gè)LSPS對(duì)稱電池的電壓曲線(紅色)和堆疊壓力曲線(藍(lán)色),初始堆疊壓力為30 MPa。一個(gè)電池施加間歇電流(實(shí)線)3小時(shí),然后開(kāi)路保持3小時(shí)。另一個(gè)電池保持開(kāi)路(虛線)。(b)來(lái)自兩個(gè)LSPS對(duì)稱電池的電壓曲線(紅色)和堆疊壓力曲線(藍(lán)色),初始堆疊壓力為5 MPa。一個(gè)電池施加間歇電流(實(shí)線),另一個(gè)保持開(kāi)路(虛線)。(c,d)對(duì)于具有30 MPa堆疊壓力(c)的兩個(gè)電池和具有5 MPa堆疊壓力(d)的兩個(gè)電池,從EIS中提取的總電阻的演變。(e,f)Li/LSPS界面示意圖,顯示了在(e)30 MPa的較高堆壓和(f)5 MPa的較低堆壓下的不同接觸條件。

圖4a顯示了在30 MPa的初始堆疊壓力下,兩種帶有LPSC顆粒的不同電池的電壓和電池堆疊壓力曲線。在125 MPa(實(shí)線)下制造的顆粒在短路前僅支持鋰沉積3.67 小時(shí)(1.84 mAh cm-2)。相比之下,更高度壓縮的顆粒(250 MPa,虛線)在短路前支持鋰沉積18.8 小時(shí)(9.41 mAh cm-2),這種短路時(shí)間差異在多個(gè)電池中始終存在。因此,在相同的初始堆疊壓力下,制造載荷在影響LPSC電池壽命和短路行為方面起著重要作用。在較低壓力下制造的顆粒的堆疊壓力下降得更快,這可能是由于鋰細(xì)絲生長(zhǎng)填充了密度較低的SSE中預(yù)先存在的孔隙,導(dǎo)致電池堆疊壓力下降得更快。

圖4b比較了LPSC制造載荷的類(lèi)似實(shí)驗(yàn),但初始堆疊壓力較低,為15 MPa。與圖4a中所示的更高堆疊壓力下的電池相比,該圖中的兩個(gè)電池(LPSC在125或250 MPa下制造)在0.5 mA cm-2下的電沉積時(shí)間分別是125 MPa為9.6小時(shí),250 MPa為27 小時(shí)。這表明15 MPa的堆壓足以促進(jìn)界面處的良好接觸,同時(shí)避免在初始施加堆壓時(shí)Li機(jī)械擠壓到顆粒的孔隙中。圖4b還表明,在不同制造載荷下制造的顆??赡鼙憩F(xiàn)出不同的失效機(jī)制。圖4c(頂部)顯示了來(lái)自圖4b中的電池(15 MPa初始堆疊壓力和125 MPa制造載荷)的電鍍鋰的橫截面SEM圖像,在底部的圖片表明測(cè)試之前具有原始的界面。電鍍后鋰電極變厚,并且在Li/LPSC界面處可能存在不均勻生長(zhǎng)的證據(jù),如圖4d中的放大圖像所示。圖4d中的SEM圖像顯示了中間相形成的證據(jù),作為中間對(duì)比度區(qū)域,厚度為幾微米,比LSPS薄得多。這些區(qū)域圍繞著電鍍的鋰金屬,這意味著中間相的形成伴隨著鋰的沉積。

48a454cc-0323-11ed-ba43-dac502259ad0.png

圖4.(a,b)初始堆疊壓力為(a)30 MPa和(b)15 MPa的四個(gè)LPSC電池的電壓曲線(紅色)和堆疊壓力演變(藍(lán)色),以及堆疊壓力曲線。(c)來(lái)自圖(b)中實(shí)驗(yàn)的陰極鋰電極的寬區(qū)域的橫截面SEM圖像,其中對(duì)在125 MPa下制備的顆粒施加15 MPa的堆疊壓力(頂部)。底部圖像顯示了電鍍前的原始鋰電極,該電極來(lái)自在125 MPa下制造的樣品。(d)為(c)中紅框的放大SEM圖像,包括SE(頂部)和BSE(底部)圖像。

作者通過(guò)電化學(xué)機(jī)械研究揭示了這兩種固態(tài)電解質(zhì)材料的不同界面行為如何與堆疊壓力演變相關(guān),并且發(fā)現(xiàn)界面形成和鋰電鍍之間的平衡是其中的關(guān)鍵。由于界面組分的電子傳導(dǎo)性,LSPS能夠連續(xù)形成界面?;贚SPS的對(duì)稱電池主要問(wèn)題是電極界面而不是鋰電鍍(圖5a)。另一方面,LPSC容易形成更薄的中間相,由于其電絕緣特性而自鈍化,并且可能同時(shí)發(fā)生不均勻的鋰電鍍(圖5b)。LSPS中界面相的持續(xù)形成導(dǎo)致電池的相對(duì)較大的體積減小,這轉(zhuǎn)化為電池內(nèi)壓力的加速降低,這也受到鋰變形和其他過(guò)程的影響。相比之下,基于LPSC的電池中的堆疊壓力主要受鋰絲生長(zhǎng)的性質(zhì)和鋰生長(zhǎng)的開(kāi)放微孔的可用性的影響。兩種不同材料中的這些不同影響導(dǎo)致不同程度的堆疊壓力降低,因此堆疊壓力的動(dòng)態(tài)跟蹤是一種強(qiáng)大的診斷工具,可以深入了解這些現(xiàn)象。未來(lái)對(duì)不同SSE材料、電極材料/結(jié)構(gòu)和全電池的組合堆壓力/電化學(xué)演化的研究是建立對(duì)SSB行為(包括界面不穩(wěn)定性)的更好理解的有希望的途徑。此外,這種原位堆疊壓力測(cè)量可用作診斷工具,可以用于早期檢測(cè)運(yùn)作中的電池單元內(nèi)的退化或故障。

48decf4e-0323-11ed-ba43-dac502259ad0.png

圖5. 示意圖顯示了從實(shí)驗(yàn)中確定的(a)LSPS和(b)LPSC的整體行為機(jī)理。垂直箭頭表示電池運(yùn)行期間電池堆疊壓力降低的相對(duì)幅度。

【總結(jié)】

研究結(jié)果表明,在保持開(kāi)路和施加電流期間,堆壓降低的程度可能受到多種因素的影響,包括鋰變形、SSE孔隙率、中間相形成和時(shí)間相關(guān)的其他電池成分的變形。作者的研究證明在對(duì)稱電池中使用兩種不同的SSE材料時(shí)施加的電流對(duì)電池堆疊壓力的影響,這提供了對(duì)連接電化學(xué)和電池堆疊壓力的可能機(jī)制的深入了解。為了進(jìn)一步理解和清楚地區(qū)分這些機(jī)械現(xiàn)象,在未來(lái)的工作中,可通過(guò)額外的表征實(shí)驗(yàn)(例如X射線斷層掃描)將測(cè)量的堆疊壓力演變與電池內(nèi)部組件的演變直接聯(lián)系起來(lái)。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 電化學(xué)
    +關(guān)注

    關(guān)注

    1

    文章

    331

    瀏覽量

    20975
  • 電池組件
    +關(guān)注

    關(guān)注

    1

    文章

    35

    瀏覽量

    8401
  • 固態(tài)電解質(zhì)

    關(guān)注

    0

    文章

    86

    瀏覽量

    5622

原文標(biāo)題:壓力變化研究鋰-固態(tài)電解質(zhì)界面的演變

文章出處:【微信號(hào):Recycle-Li-Battery,微信公眾號(hào):鋰電聯(lián)盟會(huì)長(zhǎng)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    瞬態(tài)吸收光譜數(shù)據(jù)處理、擬合與分析-Ⅱ

    2.擬合 2.1加載已正確準(zhǔn)備的數(shù)據(jù)曲面。 2.2 確定需要執(zhí)行的擬合類(lèi)型,并跳轉(zhuǎn)至對(duì)應(yīng)章節(jié)。 注意:本文提供兩種數(shù)據(jù)擬合選項(xiàng):步驟2.3為單波長(zhǎng)動(dòng)力學(xué)軌跡擬合,步驟2.4為全局分析擬合。 2.3單
    的頭像 發(fā)表于 06-23 06:44 ?71次閱讀
    瞬態(tài)吸收光譜數(shù)據(jù)處理、擬合與分析-Ⅱ

    NVIDIA攜手Ansys和DCAI推進(jìn)流體動(dòng)力學(xué)量子算法發(fā)展

    為抓住這一機(jī)遇,Ansys 宣布,將利用在 Gefion 超級(jí)計(jì)算機(jī)上運(yùn)行的 NVIDIA CUDA-Q 量子計(jì)算平臺(tái),推進(jìn)流體動(dòng)力學(xué)應(yīng)用的量子算法發(fā)展。
    的頭像 發(fā)表于 06-12 15:28 ?425次閱讀

    Adams多體動(dòng)力學(xué)仿真解決方案全面解析

    一、Adams解決方案概述Adams(Automatic Dynamic Analysis of Mechanical Systems)作為全球領(lǐng)先的多體動(dòng)力學(xué)仿真軟件,由MSC Software
    發(fā)表于 04-17 17:24

    輪轂電機(jī)驅(qū)動(dòng)電動(dòng)汽車(chē)垂向動(dòng)力學(xué)控制研究綜述

    從輪轂電機(jī)驅(qū)動(dòng)電動(dòng)汽車(chē)整車(chē)動(dòng)力學(xué)特性、簧下質(zhì)量增加對(duì)車(chē)輛動(dòng)力學(xué)性能影響以及輪 轂電機(jī)不平衡電磁力對(duì)車(chē)輛動(dòng)力學(xué)性能影響 3 個(gè)方面,介紹了 國(guó) 內(nèi)外輪轂驅(qū)動(dòng)電動(dòng)汽車(chē)垂向動(dòng)力 學(xué)研究現(xiàn)狀,
    發(fā)表于 03-07 15:21

    航空發(fā)動(dòng)機(jī)整機(jī)動(dòng)力學(xué)有限元模型建立方法

    本文針對(duì)航空發(fā)動(dòng)機(jī)的轉(zhuǎn)子/整機(jī)動(dòng)力學(xué)問(wèn)題,使用自由度動(dòng)力學(xué)模型對(duì)轉(zhuǎn)、靜子的振動(dòng)耦合機(jī)理進(jìn)行了解釋,指出傳統(tǒng)轉(zhuǎn)子動(dòng)力學(xué)模型將導(dǎo)致最大67%的計(jì)算誤差,因此需要采用整機(jī)
    的頭像 發(fā)表于 03-03 09:29 ?1147次閱讀
    航空發(fā)動(dòng)機(jī)整機(jī)<b class='flag-5'>動(dòng)力學(xué)</b>有限元模型建立方法

    全固態(tài)金屬電池的最新研究

    成果簡(jiǎn)介 全固態(tài)金屬電池因其高安全與能量密度而備受關(guān)注,但其實(shí)際應(yīng)用受限于的低可逆、有限的正極載量以及對(duì)高溫高壓操作的需求,這主要源
    的頭像 發(fā)表于 01-23 10:52 ?827次閱讀
    全固態(tài)<b class='flag-5'>鋰</b>金屬<b class='flag-5'>電池</b>的最新研究

    電池充電器和鉛酸電池充電器怎么區(qū)分?有和不同?

    上,如電動(dòng)自行車(chē)和小型乘用車(chē)。在動(dòng)力電池領(lǐng)域里,主要的也是這兩種技術(shù)之爭(zhēng),因此我們?cè)谶@一領(lǐng)域來(lái)比較鉛酸電池和鋰電池的區(qū)別具有代表性,否則,參
    發(fā)表于 01-15 10:06

    王東海最新Nature Materials:全固態(tài)電池新突破

    的利用率較低,反應(yīng)動(dòng)力學(xué)較為緩慢。為克服這些局限性,科學(xué)家們嘗試通過(guò)設(shè)計(jì)導(dǎo)電添加劑、優(yōu)化電解質(zhì)界面和提升界面結(jié)構(gòu)來(lái)改善電池性能。然而,這些策略未能根本性改變固態(tài)硫轉(zhuǎn)化反應(yīng)對(duì)三相
    的頭像 發(fā)表于 01-09 09:28 ?1154次閱讀
    王東海最新Nature Materials:全固態(tài)<b class='flag-5'>鋰</b>硫<b class='flag-5'>電池</b>新突破

    【Simcenter STAR-CCM+】通過(guò)快速準(zhǔn)確的CFD仿真加速空氣動(dòng)力學(xué)創(chuàng)新

    SimcenterSTAR-CCM+車(chē)輛外部空氣動(dòng)力學(xué)特性優(yōu)勢(shì)通過(guò)快速準(zhǔn)確的CFD仿真加速空氣動(dòng)力學(xué)創(chuàng)新使用曲面包絡(luò)和自動(dòng)網(wǎng)格劃分,快速準(zhǔn)備包含數(shù)千個(gè)零件的復(fù)雜幾何形狀通過(guò)快速準(zhǔn)確的穩(wěn)態(tài)仿真提高
    的頭像 發(fā)表于 12-27 11:02 ?1256次閱讀
    【Simcenter STAR-CCM+】通過(guò)快速準(zhǔn)確的CFD仿真加速空氣<b class='flag-5'>動(dòng)力學(xué)</b>創(chuàng)新

    全國(guó)5G新基建智慧燈桿建設(shè)十大代表性案例

    全國(guó)5G新基建智慧燈桿建設(shè)十大代表性案例
    的頭像 發(fā)表于 11-07 12:50 ?1307次閱讀
    全國(guó)5G新基建智慧燈桿建設(shè)十大<b class='flag-5'>代表性</b>案例

    全固態(tài)金屬電池陽(yáng)極夾層設(shè)計(jì)

    全固態(tài)金屬電池(ASSLB)由于其高能量密度和高安全而引起了人們的強(qiáng)烈興趣,金屬被認(rèn)為是一非常有前途的負(fù)極材料。然而,由于
    的頭像 發(fā)表于 10-31 13:45 ?696次閱讀
    全固態(tài)<b class='flag-5'>鋰</b>金屬<b class='flag-5'>電池</b>的<b class='flag-5'>鋰</b>陽(yáng)極夾層設(shè)計(jì)

    “本源悟空”超導(dǎo)量子計(jì)算機(jī)助力大規(guī)模流體動(dòng)力學(xué)量子計(jì)算

    在量子計(jì)算領(lǐng)域,來(lái)自合肥綜合國(guó)家科學(xué)中心人工智能研究院、本源量子、中國(guó)科學(xué)技術(shù)大學(xué)及其合作機(jī)構(gòu)的研究團(tuán)隊(duì)近日取得了重大突破,成功開(kāi)發(fā)出一新型的量子計(jì)算流體動(dòng)力學(xué)(QCFD)方法,并在真
    的頭像 發(fā)表于 10-22 08:02 ?937次閱讀
    “本源悟空”超導(dǎo)量子計(jì)算機(jī)助力大規(guī)模流體<b class='flag-5'>動(dòng)力學(xué)</b>量子計(jì)算

    PT500齒輪傳動(dòng)動(dòng)力學(xué)綜合測(cè)試實(shí)驗(yàn)臺(tái)

    電子發(fā)燒友網(wǎng)站提供《PT500齒輪傳動(dòng)動(dòng)力學(xué)綜合測(cè)試實(shí)驗(yàn)臺(tái).docx》資料免費(fèi)下載
    發(fā)表于 10-17 13:52 ?4次下載

    關(guān)于動(dòng)力學(xué)方程能否用matlab進(jìn)行傅里葉變換的問(wèn)題。

    有沒(méi)有大神能講一下動(dòng)力學(xué)方程能不能用matlab進(jìn)行傅里葉變換???
    發(fā)表于 10-11 09:11

    圓滿收官|(zhì) Aigtek參展第二屆波動(dòng)力學(xué)前沿與應(yīng)用學(xué)術(shù)會(huì)議載譽(yù)歸來(lái)!

    本界會(huì)議回顧9月6~8日,第二屆波動(dòng)力學(xué)前沿與應(yīng)用學(xué)術(shù)會(huì)議,在浙江舟山喜來(lái)登綠城酒店完美落幕,Aigtek功率放大器在本次會(huì)議中取得了亮眼表現(xiàn)。本次大會(huì)圍繞波動(dòng)力學(xué)在航空航天、機(jī)械、土木、交通、能源
    的頭像 發(fā)表于 09-13 08:01 ?865次閱讀
    圓滿收官|(zhì) Aigtek參展第二屆波<b class='flag-5'>動(dòng)力學(xué)</b>前沿與應(yīng)用學(xué)術(shù)會(huì)議載譽(yù)歸來(lái)!