一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

目標檢測和模型介紹

新機器視覺 ? 來源:Coggle數(shù)據(jù)科學 ? 作者:Coggle數(shù)據(jù)科學 ? 2022-07-21 15:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

目標檢測介紹

目標檢測是計算機視覺領(lǐng)域中最基礎(chǔ)且最具挑戰(zhàn)性的任務(wù)之一,其包含物體分類和定位。它為實例分割、圖像捕獲、視頻跟蹤等任務(wù)提供了強有力的特 征分類基礎(chǔ)。

傳統(tǒng)的目標檢測方法包括預(yù)處理、區(qū)域提案、特征提取、特征選擇、特征分類和后處理六個階段,大多數(shù)檢測模型關(guān)注于物體特征的提取和區(qū)域分類算法的選擇。

Deformable Part?based Model(DPM)算法三次在PASCAL VOC目標檢測競賽上獲得冠軍,是傳統(tǒng)目標檢測方法的巔峰之作. 然而在2008年至2012年期間,目標檢測模型在PASCAL VOC數(shù)據(jù)集上的檢測準確率逐漸達到瓶頸. 傳統(tǒng)方法的弊端也展現(xiàn)出來,主要包括:

算法在區(qū)域提案生成階段產(chǎn)生大量冗余的候選框且正負樣本失衡;

特征提取器如HOG、SIFT等未能充分捕捉圖像的高級語義特征和上下文內(nèi)容;

傳統(tǒng)檢測算法分階段進行,整體缺乏一種全局優(yōu)化策略

目標檢測數(shù)據(jù)集

目前主流的通用目標檢測數(shù)據(jù)集有PASCAL VOC、ImageNet、MS COCO、Open Images和Objects365。

目標檢測評價指標

當前用于評估檢測模型的性能指標主要有幀率每秒(Frames Per Second,F(xiàn)PS)、準確率(accuracy)、精確率(precision)、召回率(recall)、平均精度(Average Precision,AP)、平均 精度均值(mean Average Precision,mAP)等。

FPS即每秒識別圖像的數(shù)量,用于評估目標檢測模型的檢測速度;

accuracy是正確預(yù)測類別的樣本數(shù)占樣本總數(shù)的比例;

precision是預(yù)測正確的正樣本數(shù)占所有預(yù)測為正樣本個數(shù)的比例;

recall是預(yù)測正確的正樣本數(shù)占所有真實值為正樣本個數(shù)的比例;

PR曲線是對應(yīng)precision和recall構(gòu)成的曲線;

AP是對不同召回率點上的精確率進行平均,在PR曲線圖上表現(xiàn)為 PR 曲線下的面積;

mAP是所有類別AP的平均;

目標檢測模型

基于深度學習的目標檢測方法根據(jù)有無區(qū)域提案階段劃分為雙階段模型和單階段檢測模型。

a4770d36-07e1-11ed-ba43-dac502259ad0.png

雙階段模型

區(qū)域檢測模型將目標檢測任務(wù)分為區(qū)域提案生成、特征提取和分類預(yù)測三個階段。在區(qū)域提案生成階段,檢測模型利用搜索算法如選擇性搜索(SelectiveSearch,SS)、EdgeBoxes、區(qū) 域 提 案 網(wǎng) 絡(luò)(Region Proposal Network,RPN) 等在圖像中搜尋可能包含物體的區(qū)域。在特征提取階段,模型利用深度卷積網(wǎng)絡(luò)提取區(qū)域提案中的目標特征。在分類預(yù)測階段,模型從預(yù)定義的類別標簽對區(qū)域提案進行分類和邊框信息預(yù)測。

單階段模型

單階段檢測模型聯(lián)合區(qū)域提案和分類預(yù)測,輸入整張圖像到卷積神經(jīng)網(wǎng)絡(luò)中提取特征,最后直接輸出目標類別和邊框位置信息。這類代表性的方法有:YOLO、SSD和CenterNet等。

目標檢測研究方向

目標檢測方法可分為檢測部件、數(shù)據(jù)增強、優(yōu)化方法和學習策略四個方面 。其中檢測部件包含基準模型和基準網(wǎng)絡(luò);數(shù)據(jù)增強包含幾何變換、光學變換等;優(yōu)化方法包含特征圖、上下文模型、邊框優(yōu)化、區(qū)域提案方法、類別不平衡和訓練策略六個方面,學習策略涵蓋監(jiān)督學習、弱監(jiān)督學習和無監(jiān)督學習。

a496b686-07e1-11ed-ba43-dac502259ad0.png

特征圖融合

特征圖是圖像經(jīng)過卷積池化層輸出的結(jié)果,大多數(shù)基準檢測模型只在頂層特征圖做預(yù)測,這在很大程度上限制了模型的性能。

多層特征圖單層預(yù)測模型

分層預(yù)測模型

結(jié)合多層特征圖多層預(yù)測模型

上下文信息融合

在物體遮擋、背景信息雜亂或圖像質(zhì)量不佳的情況下,根據(jù)圖像的上下文信息能更有效更精確地檢測。

全局上下文信息

局部上下文信息

邊框優(yōu)化

當前檢測模型在小目標檢測表現(xiàn)不佳的主要原因是定位錯誤偏多,包含定位偏差大和重復預(yù)測。

優(yōu)化邊框定位

NMS優(yōu)化

類別不均衡優(yōu)化

類別不平衡的主要矛盾是負樣本數(shù)遠多于正樣本數(shù),導致訓練的深度模型效率低。

Online Hard Example Mining,OHEM

Focal Loss損失函數(shù)

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4706

    瀏覽量

    95157
  • 目標檢測
    +關(guān)注

    關(guān)注

    0

    文章

    223

    瀏覽量

    15967
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1223

    瀏覽量

    25377

原文標題:小白學CV:目標檢測任務(wù)和模型介紹

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    基于LockAI視覺識別模塊:C++目標檢測

    /LockzhinerAI/LockzhinerVisionModule/tree/master/Cpp_example/D01_test_detection 1. 基礎(chǔ)知識講解 1.1 目標檢測的基本介紹
    發(fā)表于 06-06 14:43

    如何使用OpenVINO?運行對象檢測模型

    無法確定如何使用OpenVINO?運行對象檢測模型
    發(fā)表于 03-06 07:20

    AI Cube進行yolov8n模型訓練,創(chuàng)建項目目標檢測時顯示數(shù)據(jù)集目錄下存在除標注和圖片外的其他目錄如何處理?

    AI Cube進行yolov8n模型訓練 創(chuàng)建項目目標檢測時顯示數(shù)據(jù)集目錄下存在除標注和圖片外的其他目錄怎么解決
    發(fā)表于 02-08 06:21

    AI模型部署邊緣設(shè)備的奇妙之旅:目標檢測模型

    并非易事,它涉及到從選擇合適的算法架構(gòu)到針對特定硬件平臺進行優(yōu)化等一系列復雜的工作。 接下來,我們將詳細介紹如何在資源受限的邊緣設(shè)備上成功部署目標檢測模型,探索其背后的原理和技術(shù),并討
    發(fā)表于 12-19 14:33

    YOLOv10自定義目標檢測之理論+實踐

    概述 YOLOv10 是由清華大學研究人員利用 Ultralytics Python 軟件包開發(fā)的,它通過改進模型架構(gòu)并消除非極大值抑制(NMS)提供了一種新穎的實時目標檢測方法。這些優(yōu)化使得
    的頭像 發(fā)表于 11-16 10:23 ?1548次閱讀
    YOLOv10自定義<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>之理論+實踐

    在樹莓派上部署YOLOv5進行動物目標檢測的完整流程

    卓越的性能。本文將詳細介紹如何在性能更強的計算機上訓練YOLOv5模型,并將訓練好的模型部署到樹莓派4B上,通過樹莓派的攝像頭進行實時動物目標檢測
    的頭像 發(fā)表于 11-11 10:38 ?3608次閱讀
    在樹莓派上部署YOLOv5進行動物<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>的完整流程

    目標檢測中大物體的重要性

    導讀實驗表明,對大型物體賦予更大的權(quán)重可以提高所有尺寸物體的檢測分數(shù),從而整體提升目標檢測器的性能(在COCOval2017數(shù)據(jù)集上使用InternImage-T模型,小物體
    的頭像 發(fā)表于 10-09 08:05 ?783次閱讀
    在<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>中大物體的重要性

    圖像分割與目標檢測的區(qū)別是什么

    圖像分割與目標檢測是計算機視覺領(lǐng)域的兩個重要任務(wù),它們在許多應(yīng)用場景中都發(fā)揮著關(guān)鍵作用。然而,盡管它們在某些方面有相似之處,但它們的目標、方法和應(yīng)用場景有很大的不同。本文將介紹圖像分割
    的頭像 發(fā)表于 07-17 09:53 ?2323次閱讀

    目標檢測與識別技術(shù)有哪些

    目標檢測與識別技術(shù)是計算機視覺領(lǐng)域的重要研究方向,廣泛應(yīng)用于安全監(jiān)控、自動駕駛、醫(yī)療診斷、工業(yè)自動化等領(lǐng)域。 目標檢測與識別技術(shù)的基本概念 目標
    的頭像 發(fā)表于 07-17 09:40 ?1297次閱讀

    目標檢測與識別技術(shù)的關(guān)系是什么

    目標檢測與識別技術(shù)是計算機視覺領(lǐng)域的兩個重要研究方向,它們之間存在著密切的聯(lián)系和相互依賴的關(guān)系。 一、目標檢測與識別技術(shù)的概念 目標
    的頭像 發(fā)表于 07-17 09:38 ?1226次閱讀

    目標檢測識別主要應(yīng)用于哪些方面

    介紹目標檢測識別的應(yīng)用領(lǐng)域,以及其在各個領(lǐng)域的具體應(yīng)用情況。 安全監(jiān)控 安全監(jiān)控是目標檢測識別應(yīng)用最廣泛的領(lǐng)域之一。在安全監(jiān)控系統(tǒng)中,
    的頭像 發(fā)表于 07-17 09:34 ?1864次閱讀

    慧視小目標識別算法 解決目標檢測中的老大難問題

    隨著深度學習和人工智能技術(shù)的興起與技術(shù)成熟,一大批如FasterR-CNN、RetinaNet、YOLO等可以在工業(yè)界使用的目標檢測算法已逐步成熟并進入實際應(yīng)用,大多數(shù)場景下的目標檢測
    的頭像 發(fā)表于 07-17 08:29 ?951次閱讀
    慧視小<b class='flag-5'>目標</b>識別算法   解決<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>中的老大難問題

    經(jīng)典卷積網(wǎng)絡(luò)模型介紹

    經(jīng)典卷積網(wǎng)絡(luò)模型在深度學習領(lǐng)域,尤其是在計算機視覺任務(wù)中,扮演著舉足輕重的角色。這些模型通過不斷演進和創(chuàng)新,推動了圖像處理、目標檢測、圖像生成、語義分割等多個領(lǐng)域的發(fā)展。以下將詳細探討
    的頭像 發(fā)表于 07-11 11:45 ?1202次閱讀

    基于深度學習的小目標檢測

    在計算機視覺領(lǐng)域,目標檢測一直是研究的熱點和難點之一。特別是在小目標檢測方面,由于小目標在圖像中所占比例小、特征不明顯,使得
    的頭像 發(fā)表于 07-04 17:25 ?1998次閱讀

    人臉檢測模型的精確度怎么算

    人臉檢測模型的精確度評估是一個復雜的過程,涉及到多個方面的因素。本文將從以下幾個方面進行介紹:人臉檢測模型的基本概念、評估指標、評估方法、影
    的頭像 發(fā)表于 07-04 09:14 ?1080次閱讀