一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

關于碳化硅的 10 件事

張明 ? 來源:lhhgff ? 作者:lhhgff ? 2022-08-04 09:53 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

碳化硅 (SiC) 是一種由硅 (Si) 和碳 (C) 組成的半導體化合物,屬于寬帶隙 (WBG) 材料系列。它的物理結合力非常強,使半導體具有很高的機械、化學和熱穩(wěn)定性。寬帶隙和高熱穩(wěn)定性使 SiC器件能夠在高于硅的結溫下使用,甚至超過 200°C。碳化硅在功率應用中的主要優(yōu)勢是其低漂移區(qū)電阻,這是高壓功率器件的關鍵因素。[這里是“關于 GaN 的 10 件事”]

得益于出色的物理和電子特性,基于 SiC 的功率器件正在推動電力電子設備的徹底變革。盡管這種材料早已為人所知,但它作為半導體的使用相對較新,這在很大程度上是由于大型和高質量晶片的可用性。近幾十年來,人們的努力集中在開發(fā)特定且獨特的高溫晶體生長工藝上。盡管 SiC 具有不同的多晶型晶體結構(也稱為多型),但 4H-SiC 多型六方晶體結構最適合高功率應用。一個六英寸的 SiC 晶片如圖 1 所示。

pYYBAGHEU3qAcqisAABKwAoMXx0372.jpg

圖 1:6 英寸 SiC 晶圓(來源:ST)

1、碳化硅的主要性能有哪些?

硅與碳的結合使這種材料具有出色的機械、化學和熱性能,包括:

高導熱性

低熱膨脹和優(yōu)異的抗熱震性

低功率和開關損耗

高能效

高工作頻率和溫度(工作溫度高達 200°C 結點)

小芯片尺寸(具有相同的擊穿電壓)

本征體二極管MOSFET 器件)

出色的熱管理,可降低冷卻要求

壽命長

2. 碳化硅在電子領域有哪些應用?

碳化硅是一種非常適合電力應用的半導體,這主要歸功于它能夠承受高電壓的能力,比硅可使用的電壓高十倍。基于碳化硅的半導體具有更高的熱導率、更高的電子遷移率和更低的功率損耗。碳化硅二極管和晶體管還可以在更高的頻率和溫度下工作,而不會影響可靠性。SiC 器件的主要應用,例如肖特基二極管和 FET/MOSFET 晶體管,包括轉換器、逆變器、電源、電池充電器和電機控制系統(tǒng)。

3. 為什么碳化硅在功率應用中戰(zhàn)勝了硅?

盡管是電子產品中使用最廣泛的半導體,但硅開始顯示出一些局限性,尤其是在高功率應用中。這些應用中的一個相關因素是半導體提供的帶隙或能隙。當帶隙很高時,它使用的電子設備可以更小、運行得更快、更可靠。它還可以在比其他半導體更高的溫度、電壓和頻率下運行。硅的帶隙約為 1.12eV,而碳化硅的帶隙值約為 3.26eV 的近三倍。

4. 為什么碳化硅能承受這么高的電壓?

功率器件,尤其是 MOSFET,必須能夠承受極高的電壓。由于電場的介電擊穿強度比硅高約十倍,碳化硅可以達到非常高的擊穿電壓,從 600V 到幾千伏。SiC 可以使用比硅更高的摻雜濃度,并且漂移層可以做得非常薄。漂移層越薄,其電阻越低。理論上,給定高電壓,單位面積漂移層的電阻可以降低到硅的1/300。

5. 為什么SiC在高頻下的表現(xiàn)優(yōu)于IGBT?

在大功率應用中,過去大多使用 IGBT 和雙極晶體管,目的是降低高擊穿電壓下出現(xiàn)的導通電阻。然而,這些設備提供了顯著的開關損耗,導致發(fā)熱問題限制了它們在高頻下的使用。使用碳化硅可以制造肖特基勢壘二極管和 MOSFET 等器件,實現(xiàn)高電壓、低導通電阻和快速運行。

6. 哪些雜質用于摻雜 SiC 材料?

在純碳化硅的形式下,其行為類似于電絕緣體。通過受控添加雜質或摻雜劑,SiC 可以像半導體一樣工作。P型半導體可以通過摻雜鋁、硼或鎵來獲得,而氮和磷的雜質則產生N型半導體。碳化硅在某些條件下具有導電能力,但在其他條件下不能導電,這取決于紅外輻射、可見光和紫外線的電壓或強度等因素。與其他材料不同,碳化硅能夠在很寬的范圍內控制器件制造所需的 P 型和 N 型區(qū)域。由于這些原因,碳化硅是一種適用于功率器件的材料,能夠克服硅的局限性。

7. 碳化硅如何實現(xiàn)比硅更好的熱管理?

另一個重要參數(shù)是熱導率,它是半導體如何散發(fā)其產生的熱量的指標。如果半導體不能有效散熱,則器件可以承受的最大工作電壓和溫度會受到限制。這是碳化硅優(yōu)于硅的另一個領域:碳化硅的導熱率為 1490 W/mK,而硅的導熱率為 150 W/mK。

8. SiC 反向恢復時間與 Si-MOSFET 相比如何?

SiC MOSFET 與其硅對應物一樣,具有內部體二極管。體二極管提供的主要限制之一是不希望的反向恢復行為,當二極管關斷同時承載正正向電流時會發(fā)生這種情況。因此,反向恢復時間 (trr) 成為定義 MOSFET 特性的重要指標。圖 2 顯示了 1000V 基于 Si 的 MOSFET 和基于 SiC 的 MOSFET 的 trr 之間的比較??梢钥闯?,SiC MOSFET的體二極管非??欤簍rr和Irr的值小到可以忽略不計,能量損失Err大大降低。

pYYBAGHEU4aAD4zWAACVRssUiqE899.jpg

圖2:反向恢復時間對比(來源:ROHM)

9. 為什么軟關斷對于短路保護很重要?

SiC MOSFET 的另一個重要參數(shù)是短路耐受時間 (SCWT)。由于 SiC MOSFET 占據(jù)的芯片面積非常小并且具有高電流密度,因此它們承受可能導致熱斷裂的短路的能力往往低于硅基器件。例如,對于采用 TO247 封裝的 1.2kV MOSFET,在 Vdd=700V 和 Vgs=18V 時的短路耐受時間約為 8-10 μs。隨著 Vgs 減小,飽和電流減小,耐受時間增加。隨著 Vdd 的降低,產生的熱量越少,耐受時間越長。由于關斷 SiC MOSFET 所需的時間極短,當關斷率 Vgs 較高時,高 dI/dt 會導致嚴重的電壓尖峰。因此,應使用軟關斷來逐漸降低柵極電壓,避免出現(xiàn)過壓峰值。

10. 為什么隔離式柵極驅動器是更好的選擇?

許多電子設備都是低壓電路和高壓電路,彼此互連以執(zhí)行控制和供電功能。例如,牽引逆變器通常包括低壓初級側(電源、通信控制電路)和次級側(高壓電路、電機、功率級和輔助電路)。位于初級側的控制器通常使用來自高壓側的反饋信號,如果不存在隔離屏障,則很容易受到可能的損壞。隔離屏障將電路從初級側電隔離到次級側,形成單獨的接地參考,實現(xiàn)所謂的電流隔離。這可以防止不需要的交流或直流信號從一側傳輸?shù)搅硪粋?,從而導致對電源組件的損壞。

審核編輯 黃昊宇

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 半導體
    +關注

    關注

    335

    文章

    28883

    瀏覽量

    237466
  • SiC
    SiC
    +關注

    關注

    31

    文章

    3222

    瀏覽量

    65163
  • 碳化硅
    +關注

    關注

    25

    文章

    3063

    瀏覽量

    50447
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    碳化硅功率器件有哪些特點

    隨著全球對綠色能源和高效能電子設備的需求不斷增加,寬禁帶半導體材料逐漸進入了人們的視野。其中,碳化硅(SiC)因其出色的性能而受到廣泛關注。碳化硅功率器件在電力電子、可再生能源以及電動汽車等領域的應用不斷拓展,成為現(xiàn)代電子技術的重要組成部分。本文將詳細探討
    的頭像 發(fā)表于 04-21 17:55 ?547次閱讀

    SiC碳化硅MOSFET功率器件雙脈沖測試方法介紹

    碳化硅革新電力電子,以下是關于碳化硅(SiC)MOSFET功率器件雙脈沖測試方法的詳細介紹,結合其技術原理、關鍵步驟與應用價值,助力電力電子領域的革新。
    的頭像 發(fā)表于 02-05 14:34 ?786次閱讀
    SiC<b class='flag-5'>碳化硅</b>MOSFET功率器件雙脈沖測試方法介紹

    碳化硅薄膜沉積技術介紹

    多晶碳化硅和非晶碳化硅在薄膜沉積方面各具特色。多晶碳化硅以其廣泛的襯底適應性、制造優(yōu)勢和多樣的沉積技術而著稱;而非晶碳化硅則以其極低的沉積溫度、良好的化學與機械性能以及廣泛的應用前景而
    的頭像 發(fā)表于 02-05 13:49 ?850次閱讀
    <b class='flag-5'>碳化硅</b>薄膜沉積技術介紹

    碳化硅的耐高溫性能

    在現(xiàn)代工業(yè)中,高性能材料的需求日益增長,特別是在高溫環(huán)境下。碳化硅作為一種先進的陶瓷材料,因其卓越的耐高溫性能而受到廣泛關注。 1. 碳化硅的基本特性 碳化硅是一種共價鍵合的陶瓷材料,具有高硬度
    的頭像 發(fā)表于 01-24 09:15 ?1588次閱讀

    碳化硅在半導體中的作用

    碳化硅(SiC)在半導體中扮演著至關重要的角色,其獨特的物理和化學特性使其成為制作高性能半導體器件的理想材料。以下是碳化硅在半導體中的主要作用及優(yōu)勢: 一、碳化硅的物理特性 碳化硅具有
    的頭像 發(fā)表于 01-23 17:09 ?1327次閱讀

    產SiC碳化硅MOSFET功率模塊在工商業(yè)儲能變流器PCS中的應用

    *附件:國產SiC碳化硅MOSFET功率模塊在工商業(yè)儲能變流器PCS中的應用.pdf
    發(fā)表于 01-20 14:19

    什么是MOSFET柵極氧化層?如何測試SiC碳化硅MOSFET的柵氧可靠性?

    隨著電力電子技術的不斷進步,碳化硅MOSFET因其高效的開關特性和低導通損耗而備受青睞,成為高功率、高頻應用中的首選。作為碳化硅MOSFET器件的重要組成部分,柵極氧化層對器件的整體性能和使用壽命
    發(fā)表于 01-04 12:37

    碳化硅在新能源領域的應用 碳化硅在汽車工業(yè)中的應用

    碳化硅在新能源領域的應用 1. 太陽能光伏 碳化硅材料在太陽能光伏領域主要應用于制造高性能的太陽能電池。由于其高熱導率和良好的化學穩(wěn)定性,碳化硅可以作為太陽能電池的基底材料,提高電池的效率和壽命
    的頭像 發(fā)表于 11-29 09:31 ?1151次閱讀

    碳化硅的應用領域 碳化硅材料的特性與優(yōu)勢

    碳化硅的應用領域 碳化硅(SiC),作為一種寬禁帶半導體材料,因其獨特的物理和化學特性,在多個領域展現(xiàn)出廣泛的應用潛力。以下是碳化硅的一些主要應用領域: 電子器件 : 功率器件 :碳化硅
    的頭像 發(fā)表于 11-29 09:27 ?5348次閱讀

    碳化硅襯底,進化到12英寸!

    電子發(fā)燒友網(wǎng)報道(文/梁浩斌)碳化硅產業(yè)當前主流的晶圓尺寸是6英寸,并正在大規(guī)模往8英寸發(fā)展,在最上游的晶體、襯底,業(yè)界已經具備大量產能,8英寸的碳化硅晶圓產線也開始逐漸落地,進入試產階段。 ? 讓
    的頭像 發(fā)表于 11-21 00:01 ?4118次閱讀
    <b class='flag-5'>碳化硅</b>襯底,進化到12英寸!

    碳化硅功率器件的工作原理和應用

    碳化硅(SiC)功率器件近年來在電力電子領域取得了顯著的關注和發(fā)展。相比傳統(tǒng)的硅(Si)基功率器件,碳化硅具有許多獨特的優(yōu)點,使其在高效能、高頻率和高溫環(huán)境下的應用中具有明顯的優(yōu)勢。本文將探討碳化硅功率器件的原理、優(yōu)勢、應用及其
    的頭像 發(fā)表于 09-13 11:00 ?1246次閱讀
    <b class='flag-5'>碳化硅</b>功率器件的工作原理和應用

    碳化硅功率器件的優(yōu)點和應用

    碳化硅(SiliconCarbide,簡稱SiC)功率器件是近年來電力電子領域的一項革命性技術。與傳統(tǒng)的硅基功率器件相比,碳化硅功率器件在性能和效率方面具有顯著優(yōu)勢。本文將深入探討碳化硅功率器件的基本原理、優(yōu)點、應用領域及其發(fā)展
    的頭像 發(fā)表于 09-11 10:44 ?1143次閱讀
    <b class='flag-5'>碳化硅</b>功率器件的優(yōu)點和應用

    碳化硅功率器件有哪些優(yōu)勢

    碳化硅(SiC)功率器件是一種基于碳化硅半導體材料的電力電子器件,近年來在功率電子領域迅速嶄露頭角。與傳統(tǒng)的硅(Si)功率器件相比,碳化硅器件具有更高的擊穿電場、更高的熱導率、更高的飽和電子漂移速度以及更高的工作溫度等優(yōu)勢,因此
    的頭像 發(fā)表于 09-11 10:25 ?1162次閱讀
    <b class='flag-5'>碳化硅</b>功率器件有哪些優(yōu)勢

    碳化硅晶圓和硅晶圓的區(qū)別是什么

    以下是關于碳化硅晶圓和硅晶圓的區(qū)別的分析: 材料特性: 碳化硅(SiC)是一種寬禁帶半導體材料,具有比硅(Si)更高的熱導率、電子遷移率和擊穿電場。這使得碳化硅晶圓在高溫、高壓和高頻應
    的頭像 發(fā)表于 08-08 10:13 ?3059次閱讀