一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

IMEC制造首個(gè)完全自對(duì)準(zhǔn)的雙金屬級(jí)半鑲嵌模塊

半導(dǎo)體芯科技SiSC ? 來(lái)源:半導(dǎo)體芯科技SiSC ? 作者:半導(dǎo)體芯科技SiS ? 2022-11-18 16:38 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

來(lái)源:《半導(dǎo)體芯科技》雜志 10/11月刊

作者:Gayle Murdoch, imec技術(shù)團(tuán)隊(duì)主要成員;Zsolt Tokei, imec FELLOW兼納米互連項(xiàng)目總監(jiān)

半鑲嵌集成是一種將互連工藝流程擴(kuò)展至用于低于20nm金屬間距的方法,該方法富有吸引力且具成本效益。IMEC是在五年前提出這種方法的,現(xiàn)今確認(rèn):已對(duì)一款18nm金屬間距的功能性雙金屬級(jí)半鑲嵌模塊進(jìn)行了首次實(shí)驗(yàn)演示。

半鑲嵌集成和BEOL發(fā)展路線圖

20多年來(lái),銅(Cu)雙鑲嵌(dual-damascene)一直是構(gòu)建可靠互連的主要工藝流程。但是,當(dāng)尺寸繼續(xù)縮小,并且金屬間距(metal pitches)變得像20nm及以下那樣緊密時(shí),由于電阻電容(RC)乘積的急劇增長(zhǎng),后段制程(BEOL)越來(lái)越受到RC延遲的不利影響。這個(gè)問(wèn)題迫使互連行業(yè)著手尋找替代集成方案,以及在緊密金屬間距下具有更好品質(zhì)因數(shù)的金屬。

在本文中,imec的研究人員Gayle Murdoch和Zsolt Tokei著重闡述了緊密金屬間距下通孔自對(duì)準(zhǔn)的重要性,解釋并演示了模塊的主要技術(shù)參數(shù),包括通孔和線路電阻以及可靠性。該研究結(jié)果在2022年IEEE VLSI技術(shù)與電路研討會(huì)(VLSI 2022)上發(fā)表。

bee828f0661c4aa789af8e03f43e0079~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669364945&x-signature=zkznNBca2Yyb4N3R1oYAtPM9YC4%3D

△圖1:imec的半鑲嵌流程:a)Ru蝕刻(底部局部互連線(Mx)的形成);b)間隙填充;c)通孔蝕刻;d)通孔填充和頂線(Mx+1)形成(在VLSI2022大會(huì)上展示)。

大約五年前,imec最初提出半鑲嵌(semi-damascene)作為銅雙鑲嵌的可行替代方案,用于集成1nm(及以下)技術(shù)節(jié)點(diǎn)的最關(guān)鍵的局部(Mx)互連層。

與雙鑲嵌不同,半鑲嵌集成依賴于互連金屬的直接圖案化來(lái)制作線條(稱為減材金屬化-subtractive metallization)。不需要采用金屬的化學(xué)機(jī)械拋光(CMP)來(lái)完成工藝流程。

連接后續(xù)互連層的通孔以單鑲嵌方式圖案化,然后用金屬填充和過(guò)度填充,這意味著金屬沉積會(huì)繼續(xù)進(jìn)行,直到在電介質(zhì)上形成一層金屬。接著,對(duì)該金屬層進(jìn)行掩膜和蝕刻,以形成具有正交線的第二互連層。

在金屬圖案化之后,線之間的間隙可以用電介質(zhì)填充,或用于在局部層處形成(部分)氣隙。請(qǐng)注意,在半鑲嵌流程中,一次性形成兩層(通孔和頂部金屬),就像傳統(tǒng)的雙鑲嵌一樣。當(dāng)以雙鑲嵌為基準(zhǔn)進(jìn)行評(píng)估時(shí),這使其具備很好的成本競(jìng)爭(zhēng)力(見(jiàn)圖2)。

da07f4a7fddc4dc89b52b51f488a2d69~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669364945&x-signature=ytR25YoK1qe3QislqG1mtNcMigk%3D

△圖2:18nm金屬間距下半鑲嵌與雙鑲嵌成本的比較。

半鑲嵌集成流程的好處

據(jù)imec Fellow兼納米互連項(xiàng)目總監(jiān)Zsolt Tokei稱,與銅雙鑲嵌相比,半鑲嵌在緊密的金屬間距下具有多項(xiàng)優(yōu)勢(shì)。他表示:“首先,它允許更高的線路縱橫比,同時(shí)保持電容處于受控狀態(tài),這有望帶來(lái)整體RC優(yōu)勢(shì)。其次,由于沒(méi)有金屬CMP工藝步驟,因而造就出更簡(jiǎn)化和成本效益更高的集成方案。最后,半鑲嵌集成需要一種無(wú)阻擋層(barrierless)、可圖案化的金屬,例如鎢(W)、鉬(Mo)或釕(Ru)。通過(guò)使用不需要金屬阻擋層的金屬(這不同于銅),珍貴的導(dǎo)電區(qū)域就可以被互連金屬本身充分利用,從而確保在微縮尺寸上具有競(jìng)爭(zhēng)力的通孔電阻。”

141209a67df44e9997ef7ebd54340661~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669364945&x-signature=R9J%2Fjnhdt1nbL3AEj2wODKmTsyI%3D

△圖3:沿Mx(左)和跨Mx(右)的自對(duì)準(zhǔn)通孔。X-TEM顯示自對(duì)準(zhǔn)通孔落在18nm間距Ru線上(在VLSI 2022大會(huì)上演示)。

當(dāng)然,除了上述好處之外,在這樣的一項(xiàng)計(jì)劃獲得業(yè)界認(rèn)可之前,還有許多挑戰(zhàn)需要解決。朝這個(gè)方向邁出的一步是實(shí)際演示了雙金屬級(jí)方案。雖然迄今僅通過(guò)仿真和建模顯示了這些好處,但是imec首次為雙金屬級(jí)半鑲嵌模塊提供了實(shí)驗(yàn)證據(jù)。

完全自對(duì)準(zhǔn)的通孔:一個(gè)至關(guān)重要的構(gòu)建塊

在金屬間距小至20nm的情況下,控制通孔降落在窄線上是半鑲嵌集成模塊成功運(yùn)行的關(guān)鍵。當(dāng)通孔和線路(在通孔頂部和底部)沒(méi)有正確對(duì)齊時(shí),通孔和相鄰線路之間存在泄漏的風(fēng)險(xiǎn)。這些泄漏路徑是由小通孔的常規(guī)圖案化引起的過(guò)大覆蓋誤差造成的。

imec技術(shù)團(tuán)隊(duì)主要成員Gayle Murdoch說(shuō):“找到一種方法來(lái)制作功能性、完全自對(duì)準(zhǔn)的通孔一直是半鑲嵌工藝的‘圣杯’。我們通過(guò)imec的集成、光刻、蝕刻和清洗團(tuán)隊(duì)之間的密切合作實(shí)現(xiàn)了這一里程碑。憑借我們完全自對(duì)準(zhǔn)的集成方案,我們能夠補(bǔ)償高達(dá)5nm的覆蓋誤差,這是一項(xiàng)重要的成就。”

通過(guò)在間隙填充后選擇性去除氮化硅來(lái)確保底部自對(duì)準(zhǔn),從而允許在下部金屬線的范圍內(nèi)形成通孔。朝向頂部金屬層(Ru)的自對(duì)準(zhǔn)是通過(guò)Ru過(guò)度蝕刻步驟實(shí)現(xiàn)的,該步驟在通孔過(guò)度填充和Ru圖案化之后應(yīng)用。

2edeef02cb1a4dfa977a6a793ba4876a~noop.image?_iz=58558&from=article.pc_detail&x-expires=1669364945&x-signature=UekBl1BHOSgFD8hQv41L7p0MjyQ%3D

△圖4:Ru線和Cu線的導(dǎo)電面積與線電阻的關(guān)系(在VLSI 2022大會(huì)上演示)。

新的里程碑:18nm間距下的良好電阻和可靠性

使用具有完全自對(duì)準(zhǔn)通孔的Ru減法蝕刻(subtractive etch)產(chǎn)生了18nm金屬間距的功能性雙金屬級(jí)器件。結(jié)合自對(duì)準(zhǔn)雙重圖案化(SADP)的EUV光刻用于對(duì)9nm“寬”的Ru底部局部互連線(Mx)進(jìn)行圖案化,而單次曝光EUV光刻則用于印刷頂線(Mx+1)和通孔。頂部金屬與氣隙相組合以抵消電容的增加。

當(dāng)將Ru與Cu的線路電阻與導(dǎo)電面積進(jìn)行基準(zhǔn)比較時(shí),在目標(biāo)金屬間距下,Ru明顯優(yōu)于Cu。通孔自對(duì)準(zhǔn)在形態(tài)學(xué)和電學(xué)上都得到了確證。實(shí)現(xiàn)了優(yōu)異的通孔電阻(對(duì)于26~18nm的金屬間距,其阻值范圍在40Ω和60Ω之間),并且證實(shí)通孔到線擊穿電場(chǎng)>9MV/cm。

Zsolt Tokei說(shuō)道:“我們展示了所有關(guān)鍵技術(shù)參數(shù)的卓越價(jià)值,包括通孔和線路電阻及可靠性。該演示表明,半鑲嵌是雙鑲嵌的一種有價(jià)值的替代方案,用于集成1nm技術(shù)節(jié)點(diǎn)及以后的前三個(gè)局部互連層。我們的具有完全自對(duì)準(zhǔn)通孔的雙金屬級(jí)器件已被證明是關(guān)鍵的構(gòu)建塊?!?/p>

研究人員表示,通過(guò)增加線路的縱橫比(這可以降低電阻),同時(shí)保持氣隙(這可以控制電容),可以實(shí)現(xiàn)進(jìn)一步的改進(jìn)。與此同時(shí),對(duì)使用半鑲嵌技術(shù)(它允許在標(biāo)準(zhǔn)單元級(jí)別進(jìn)一步減小面積)實(shí)現(xiàn)中段制程(MOL)和BEOL技術(shù)下一步改進(jìn),imec也已經(jīng)有了具體的想法。

參考文獻(xiàn)

Gayle Murdoch于1997年畢業(yè)于愛(ài)丁堡大學(xué),獲化學(xué)物理學(xué)榮譽(yù)學(xué)士學(xué)位。她的職業(yè)生涯先是在NECSemiconductors公司擔(dān)任光刻工程師,后來(lái)加入Filtronic Compound Semiconductors公司,從事GaAs器件的蝕刻開(kāi)發(fā)和集成工作,并最終成為首席蝕刻工程師。2008年,她加入了imec的先進(jìn)光刻技術(shù)團(tuán)隊(duì),然后在2013年轉(zhuǎn)到BEOL集成部門(mén)。她從事過(guò)一系列課題的研發(fā),包括低k電介質(zhì)集成,完全自對(duì)準(zhǔn)通孔,以及最近的半鑲嵌集成。目前,她是技術(shù)團(tuán)隊(duì)的主要成員職位,并領(lǐng)導(dǎo)BEOL集成團(tuán)隊(duì)。

Zsolt Tokei是imec Fellow兼納米互連項(xiàng)目總監(jiān)。他于1999年加入imec,先是作為低k銅互連領(lǐng)域的一名工藝工程師和研究人員,接下來(lái)?yè)?dān)任了金屬部門(mén)的主管。之后,他成為了納米互連項(xiàng)目的首席科學(xué)家和總監(jiān)。他1994年在匈牙利德布勒森的科蘇特(Kossuth)大學(xué)獲得物理學(xué)碩士學(xué)位。1997年在匈牙利科蘇特大學(xué)和法國(guó)艾克斯-馬賽第三大學(xué)(Aix Marseille-III)大學(xué)共同指導(dǎo)的論文框架內(nèi),他獲得了物理學(xué)和材料科學(xué)的博士學(xué)位。1998年,作為博士后研究員,他開(kāi)始在德國(guó)杜塞爾多夫的馬克斯-普朗克研究所工作。加入imec后,他繼續(xù)從事一系列互連問(wèn)題的研究,包括微縮、金屬化、電氣特性分析、模塊集成、可靠性和系統(tǒng)等方面。

審核編輯 黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 模塊
    +關(guān)注

    關(guān)注

    7

    文章

    2787

    瀏覽量

    50248
  • IMEC
    +關(guān)注

    關(guān)注

    0

    文章

    59

    瀏覽量

    22555
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    下一代高速芯片晶體管解制造問(wèn)題解決了!

    在半導(dǎo)體工藝演進(jìn)到2nm,1nm甚至0.7nm等節(jié)點(diǎn)以后,晶體管結(jié)構(gòu)該如何演進(jìn)?2017年,imec推出了叉片晶體管(forksheet),作為環(huán)柵(GAA)晶體管的自然延伸。不過(guò),產(chǎn)業(yè)對(duì)其可制造
    發(fā)表于 06-20 10:40

    對(duì)準(zhǔn)硅化物工藝詳解

    源漏區(qū)的單晶硅和柵極上的多晶硅即使在摻雜后仍然具有較高的電阻率,對(duì)準(zhǔn)硅化物(salicide)工藝能夠同時(shí)減小源/漏電極和柵電極的薄膜電阻,降低接觸電阻,并縮短與柵相關(guān)的RC延遲。另外,它避免了
    的頭像 發(fā)表于 05-28 17:30 ?517次閱讀
    <b class='flag-5'>自</b><b class='flag-5'>對(duì)準(zhǔn)</b>硅化物工藝詳解

    對(duì)準(zhǔn)雙重圖案化技術(shù)的優(yōu)勢(shì)與步驟

    在芯片制造中,光刻技術(shù)在硅片上刻出納米級(jí)的電路圖案。然而,當(dāng)制程進(jìn)入7納米以下,傳統(tǒng)光刻的分辨率已逼近物理極限。這時(shí), 對(duì)準(zhǔn)雙重圖案化(SADP) 的技術(shù)登上舞臺(tái), 氧化物間隔層切割
    的頭像 發(fā)表于 05-28 16:45 ?303次閱讀
    <b class='flag-5'>自</b><b class='flag-5'>對(duì)準(zhǔn)</b>雙重圖案化技術(shù)的優(yōu)勢(shì)與步驟

    芯片制造對(duì)準(zhǔn)接觸技術(shù)介紹

    但當(dāng)芯片做到22納米時(shí),工程師遇到了大麻煩——用光刻機(jī)畫(huà)接觸孔時(shí),稍有一點(diǎn)偏差就會(huì)導(dǎo)致芯片報(bào)廢。 對(duì)準(zhǔn)接觸技術(shù)(SAC) ,完美解決了這個(gè)難題。
    的頭像 發(fā)表于 05-19 11:11 ?339次閱讀
    芯片<b class='flag-5'>制造</b>中<b class='flag-5'>自</b><b class='flag-5'>對(duì)準(zhǔn)</b>接觸技術(shù)介紹

    光束整形在金屬增材制造應(yīng)用中的優(yōu)勢(shì)

    激光熔覆是一種制造(或修復(fù))金屬部件的工藝,這些部件的尺寸通常比使用選擇性激光熔化制造金屬部件大。要“添加”的金屬可以是細(xì)粉的形式,小心地
    的頭像 發(fā)表于 04-30 18:22 ?139次閱讀
    光束整形在<b class='flag-5'>金屬</b>增材<b class='flag-5'>制造</b>應(yīng)用中的優(yōu)勢(shì)

    IBC技術(shù)新突破:基于物理氣相沉積(PVD)的對(duì)準(zhǔn)背接觸SABC太陽(yáng)能電池開(kāi)發(fā)

    PVD沉積n型多晶硅層,結(jié)合對(duì)準(zhǔn)分離,顯著簡(jiǎn)化了工藝流程。SABC太陽(yáng)能電池是一種先進(jìn)的背接觸(BC)太陽(yáng)能電池技術(shù),其核心特點(diǎn)是通過(guò)對(duì)準(zhǔn)技術(shù)實(shí)現(xiàn)電池背面的正
    的頭像 發(fā)表于 04-14 09:03 ?371次閱讀
    IBC技術(shù)新突破:基于物理氣相沉積(PVD)的<b class='flag-5'>自</b><b class='flag-5'>對(duì)準(zhǔn)</b>背接觸SABC太陽(yáng)能電池開(kāi)發(fā)

    CAB450M12XM3工業(yè)級(jí)SiC橋功率模塊CREE

    CAB450M12XM3工業(yè)級(jí)SiC橋功率模塊CREE CAB450M12XM3是Wolfspeed(原CREE)精心打造的一款工業(yè)級(jí)全碳化硅(SiC)
    發(fā)表于 03-17 09:59

    一種新型的非晶態(tài)NbP金屬薄膜

    來(lái)自斯坦福大學(xué)和韓國(guó)Ajou大學(xué)的科學(xué)家們?cè)凇禨cience》雜志上發(fā)表了一項(xiàng)開(kāi)創(chuàng)性的研究成果。他們發(fā)現(xiàn)了一種新型的非晶態(tài)NbP金屬薄膜,其電阻率隨著薄膜厚度的減小而顯著降低,這一現(xiàn)象與傳統(tǒng)金屬
    的頭像 發(fā)表于 02-07 10:08 ?646次閱讀
    一種新型的非晶態(tài)NbP<b class='flag-5'>半</b><b class='flag-5'>金屬</b>薄膜

    Techwiz LCD 3D應(yīng)用:基板未對(duì)準(zhǔn)分析

    當(dāng)在制造LCD設(shè)備的過(guò)程中TFT基板 和公共電極基板未對(duì)準(zhǔn)時(shí),LCD設(shè)備的顯示質(zhì)量會(huì)受到不利影響??墒褂肨echwiz LCD 3D來(lái)進(jìn)行基板未對(duì)準(zhǔn)時(shí)的光緒分析。
    發(fā)表于 01-21 09:50

    模塊電源的散熱設(shè)計(jì)

    模塊電源的散熱設(shè)計(jì) 1、引言 DC-DC模塊電源是利用先進(jìn)的制造工藝構(gòu)成一個(gè)整體的、結(jié)構(gòu)緊湊的、體積小的高質(zhì)量穩(wěn)壓電源。因模塊電源使用簡(jiǎn)
    的頭像 發(fā)表于 01-08 11:52 ?973次閱讀
    <b class='flag-5'>半</b>磚<b class='flag-5'>模塊</b>電源的散熱設(shè)計(jì)

    TRCX:摻雜過(guò)程分析

    在 LTPS 制造過(guò)程中,使用對(duì)準(zhǔn)掩模通過(guò)離子注入來(lái)金屬化有源層。當(dāng)通過(guò) TRCX 計(jì)算電容時(shí),應(yīng)用與實(shí)際工藝相同的原理。工程師可以根據(jù)真實(shí)的 3D 結(jié)構(gòu)提取準(zhǔn)確的電容,并分析有源層
    發(fā)表于 01-08 08:46

    Techwiz LCD:基板未對(duì)準(zhǔn)分析

    當(dāng)在制造LCD設(shè)備的過(guò)程中TFT基板 和公共電極基板未對(duì)準(zhǔn)時(shí),LCD設(shè)備的顯示質(zhì)量會(huì)受到不利影響??墒褂肨echwiz LCD 3D來(lái)進(jìn)行基板未對(duì)準(zhǔn)時(shí)的光緒分析。
    發(fā)表于 12-23 19:37

    UCC25660x橋LLC評(píng)估模塊

    電子發(fā)燒友網(wǎng)站提供《UCC25660x橋LLC評(píng)估模塊.pdf》資料免費(fèi)下載
    發(fā)表于 11-08 14:49 ?6次下載
    UCC25660x<b class='flag-5'>半</b>橋LLC評(píng)估<b class='flag-5'>模塊</b>

    IMEC組建汽車Chiplet聯(lián)盟

    來(lái)源:芝能智芯 微電子研究中心imec宣布了一項(xiàng)旨在推動(dòng)汽車領(lǐng)域Chiplet技術(shù)發(fā)展的新計(jì)劃。 這項(xiàng)名為汽車Chiplet計(jì)劃(ACP)的倡議,吸引了包括Arm、ASE、寶馬、博世、Cadence
    的頭像 發(fā)表于 10-15 13:36 ?643次閱讀
    <b class='flag-5'>IMEC</b>組建汽車Chiplet聯(lián)盟

    imec實(shí)現(xiàn)硅基量子點(diǎn)創(chuàng)紀(jì)錄低電荷噪聲

    比利時(shí)微電子研究中心(imec)近期在量子計(jì)算領(lǐng)域取得了重大突破,成功在12英寸CMOS平臺(tái)上制造出了具有創(chuàng)紀(jì)錄低電荷噪聲的Si MOS量子點(diǎn)。這一里程碑式的成就不僅展示了imec在量子技術(shù)前沿的領(lǐng)先地位,更為大規(guī)模硅基量子計(jì)算
    的頭像 發(fā)表于 08-07 11:37 ?874次閱讀