計(jì)算性能、軟件算法、連接性和深度學(xué)習(xí)的最新進(jìn)展正在徹底改變?nèi)藱C(jī)交互。例如,通過將這些創(chuàng)新應(yīng)用于消費(fèi)產(chǎn)品,移動(dòng)設(shè)備可以提供更強(qiáng)大的用戶體驗(yàn)。在運(yùn)輸中,車輛可以封裝智能功能,使其更安全、更高效。無人駕駛飛行器(UAV)或無人機(jī)可以在不使人類處于危險(xiǎn)之中的情況下完成對(duì)遠(yuǎn)程管道和基礎(chǔ)設(shè)施資產(chǎn)的安全檢查。在工業(yè)應(yīng)用中,開發(fā)人員可以通過高度智能的機(jī)器人技術(shù)實(shí)現(xiàn)更高水平的制造過程的效率、精度和可擴(kuò)展性。消費(fèi)者還可以釋放物聯(lián)網(wǎng) (IoT) 和智能家居自動(dòng)化的好處,騰出時(shí)間做更多我們喜歡的事情。
當(dāng)今物聯(lián)網(wǎng)應(yīng)用、自動(dòng)駕駛汽車和工業(yè)機(jī)器人中傳感器和攝像頭的激增需要新的高性能邊緣處理解決方案,以提高計(jì)算能力,同時(shí)消耗更少的能源并增強(qiáng)安全性和隱私性。盡管云計(jì)算已經(jīng)徹底改變了我們處理和存儲(chǔ)大型數(shù)據(jù)集的方式,但性能和帶寬等一些障礙限制了自主應(yīng)用程序,因?yàn)榛谶吘壍臎Q策必須以最小的延遲做出。
隨著近年來物聯(lián)網(wǎng)技術(shù)和傳感器的爆炸式增長(zhǎng),沒有簡(jiǎn)單的方法來管理和利用數(shù)十億連接設(shè)備持續(xù)生成的所有數(shù)據(jù)。實(shí)現(xiàn)人工智能 (AI) 的承諾需要訪問大量傳感器數(shù)據(jù),以便幾乎即時(shí)做出決策。此外,傳感器和計(jì)算資源之間的直接通信對(duì)于實(shí)時(shí)決策至關(guān)重要。這些新需求正在推動(dòng)行業(yè)向邊緣超級(jí)計(jì)算發(fā)展,這使得數(shù)據(jù)采集和處理能夠在接入網(wǎng)絡(luò)的邊緣進(jìn)行,并且更接近最終用戶。
管理數(shù)據(jù)洪流
考慮一下大量安裝的裝有傳感器的物聯(lián)網(wǎng)設(shè)備,這些設(shè)備會(huì)產(chǎn)生大量數(shù)據(jù)。據(jù)Verizon稱,每平方公里有超過一百萬臺(tái)連接設(shè)備。這些物聯(lián)網(wǎng)設(shè)備無處不在,而且數(shù)量還在不斷增長(zhǎng)。從我們家庭和辦公室的安全攝像頭,到個(gè)人醫(yī)療設(shè)備和農(nóng)業(yè)傳感器,再到我們隨身攜帶的智能手機(jī)。Verizon估計(jì),一輛聯(lián)網(wǎng)汽車在任何一天產(chǎn)生的數(shù)據(jù)都比Facebook的所有數(shù)據(jù)都要多。將這一數(shù)據(jù)輸出水平乘以當(dāng)今部署在世界各地的所有連接設(shè)備、無線傳感器和機(jī)器人,很容易看出我們正面臨著一場(chǎng)數(shù)據(jù)海嘯,這些數(shù)據(jù)可能會(huì)淹沒我們做出實(shí)時(shí)決策的能力。
不幸的是,估計(jì)有 80% 的邊緣數(shù)據(jù)被浪費(fèi)了,因?yàn)橛捎趲挕⒀舆t、隱私或成本限制,這些數(shù)據(jù)無法傳輸?shù)皆贫诉M(jìn)行處理。為了實(shí)現(xiàn)人工智能和自主性的承諾,我們必須從根本上提高網(wǎng)絡(luò)和計(jì)算效率。這包括在邊緣持續(xù)學(xué)習(xí)的能力,而不是依靠令人眼花繚亂的數(shù)據(jù)上傳到云端來執(zhí)行深度神經(jīng)網(wǎng)絡(luò)的完全集中訓(xùn)練。
現(xiàn)有的網(wǎng)絡(luò)和云計(jì)算技術(shù)沒有經(jīng)過優(yōu)化,無法處理物聯(lián)網(wǎng)設(shè)備生成的大量邊緣數(shù)據(jù)。超大規(guī)模數(shù)據(jù)中心中使用的高性能、高功耗服務(wù)器笨拙且成本太高,無法部署在邊緣附近。系統(tǒng)和網(wǎng)絡(luò)架構(gòu)師已經(jīng)設(shè)想了應(yīng)對(duì)這一數(shù)據(jù)挑戰(zhàn)的解決方案:將更多的計(jì)算智能添加到邊緣而不是云中。隨著這一趨勢(shì)的鞏固和擴(kuò)大,計(jì)算基礎(chǔ)設(shè)施的新增長(zhǎng)將更接近數(shù)據(jù)中心領(lǐng)域之外的網(wǎng)絡(luò)邊緣的最終用戶。
根據(jù)Forrester Research的數(shù)據(jù),以下因素正在推動(dòng)邊緣計(jì)算的增長(zhǎng):
物聯(lián)網(wǎng)和機(jī)器對(duì)機(jī)器 (M2M) 連接的持續(xù)擴(kuò)展
復(fù)雜的算法和新的應(yīng)用,如人工智能、機(jī)器學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)、自動(dòng)駕駛汽車和虛擬/增強(qiáng)現(xiàn)實(shí),所有這些都需要低延遲和高可靠性
影響云計(jì)算的帶寬和連接限制
數(shù)據(jù)存儲(chǔ)和傳輸成本上升
日益分散和移動(dòng)的員工隊(duì)伍
新的和正在出現(xiàn)的數(shù)據(jù)隱私問題和要求。
邊緣超級(jí)計(jì)算的興起
在這十年及以后,我們將看到建立在邊緣計(jì)算和邊緣服務(wù)器技術(shù)基礎(chǔ)上的數(shù)據(jù)中心之外的高性能計(jì)算的創(chuàng)新。我們將看到一種新的計(jì)算范式的迅速崛起:邊緣超級(jí)計(jì)算。
當(dāng)我們從數(shù)據(jù)中心模型轉(zhuǎn)向智能、計(jì)算能力強(qiáng)大的邊緣設(shè)備時(shí),計(jì)算基礎(chǔ)設(shè)施特征的權(quán)衡。
隨著智能邊緣設(shè)備在該領(lǐng)域的不斷激增,將高性能計(jì)算功能嵌入這些設(shè)備所需的投資和上市時(shí)間只會(huì)加速。自動(dòng)駕駛汽車和工業(yè)物聯(lián)網(wǎng)設(shè)備等實(shí)時(shí)應(yīng)用將需要大量的車載計(jì)算資源。通過添加本地服務(wù)器或邊緣數(shù)據(jù)中心,還可以更有效地解決帶寬受限的應(yīng)用程序。
戰(zhàn)略和架構(gòu)的轉(zhuǎn)變
由于邊緣的機(jī)器智能依賴于嵌入在做出實(shí)時(shí)決策的設(shè)備中的各種傳感器,因此所需的計(jì)算能力和低延遲大于當(dāng)前數(shù)據(jù)處理基礎(chǔ)設(shè)施(即云)能夠大規(guī)模處理的能力。這些新興需求正在改變數(shù)據(jù)處理的方式和位置。
許多數(shù)據(jù)中心正在將其部分計(jì)算資源移近接收和發(fā)送數(shù)據(jù)的設(shè)備。越來越多的人工智能設(shè)備用戶選擇在現(xiàn)場(chǎng)而不是在云中處理數(shù)據(jù)。通過在本地存儲(chǔ)和處理數(shù)據(jù)而不是傳輸?shù)皆?,邊緣?jì)算增強(qiáng)了安全性和隱私性的許多方面。邊緣計(jì)算還為創(chuàng)新開辟了新的機(jī)會(huì),以滿足對(duì)高性能、低延遲、節(jié)能的物聯(lián)網(wǎng)產(chǎn)品和智能自主應(yīng)用日益增長(zhǎng)的需求。
向邊緣計(jì)算的持續(xù)轉(zhuǎn)變將需要重新構(gòu)想 IT 戰(zhàn)略和架構(gòu)。以下因素是新邊緣超級(jí)計(jì)算范式的重要考慮因素:
將支持操作重新調(diào)整到邊緣 - 將軟件支持從 x86 CPU 和計(jì)算統(tǒng)一設(shè)備架構(gòu) (CUDA) GPU 擴(kuò)展到針對(duì)邊緣或嵌入式服務(wù)器優(yōu)化的新架構(gòu)。部署靈活的硬件架構(gòu),利用不斷發(fā)展的算法工作負(fù)載在多租戶環(huán)境中運(yùn)行不同類型的工作負(fù)載。
擴(kuò)展開發(fā)運(yùn)維 - 將開發(fā)運(yùn)維從云擴(kuò)展到邊緣設(shè)備以及介于兩者之間的任何位置。
重新確定資本分配的優(yōu)先級(jí) - 探索部署本地邊緣服務(wù)器和/或增加邊緣數(shù)據(jù)中心容量的投資。
將高性能邊緣處理功能添加到當(dāng)今的運(yùn)營(yíng)架構(gòu)中,對(duì)于物聯(lián)網(wǎng)和人工智能基礎(chǔ)設(shè)施來說,與過去十年中擴(kuò)展云計(jì)算能力一樣重要。盡管在邊緣處理的許多領(lǐng)域取得了進(jìn)展,但在邊緣部署高級(jí)算法的開發(fā)人員仍然受到資源限制。基于邊緣的機(jī)器智能在改進(jìn)任務(wù)和流程方面的全部潛力尚未實(shí)現(xiàn)。
開發(fā)人員必須為優(yōu)化的目標(biāo)硬件定制 AI 和高性能工作負(fù)載,而不是相反。硬件應(yīng)專為這些要求苛刻的邊緣工作負(fù)載而構(gòu)建。尋求為新的應(yīng)用挑戰(zhàn)創(chuàng)建算法的開發(fā)人員需要實(shí)驗(yàn)和創(chuàng)新的空間。目前可用的邊緣計(jì)算產(chǎn)品可以實(shí)現(xiàn)設(shè)計(jì)靈活性,但它們?nèi)狈⑾敕ㄞD(zhuǎn)化為可以大規(guī)模部署的市場(chǎng)可行應(yīng)用程序的處理能力。解決方案是邊緣超級(jí)計(jì)算——一種全新的硬件和軟件架構(gòu),將高性能計(jì)算與復(fù)雜的人工智能功能相結(jié)合。
在多個(gè)應(yīng)用程序和市場(chǎng)中部署邊緣超級(jí)計(jì)算的好處將對(duì)世界各地的人們、工作場(chǎng)所、行業(yè)和城市產(chǎn)生變革。隨著智能邊緣設(shè)備的實(shí)時(shí)決策成為現(xiàn)實(shí),我們將體驗(yàn)到一個(gè)充滿我們尚未想象的可能性和無數(shù)創(chuàng)新的世界,這些創(chuàng)新將使我們的生活更安全、更有保障、更高效。
審核編輯:郭婷
-
云計(jì)算
+關(guān)注
關(guān)注
39文章
7974瀏覽量
139739 -
物聯(lián)網(wǎng)
+關(guān)注
關(guān)注
2930文章
46128瀏覽量
390761 -
智能家居
+關(guān)注
關(guān)注
1934文章
9782瀏覽量
190256
發(fā)布評(píng)論請(qǐng)先 登錄
從邊緣計(jì)算 到云端計(jì)算

邊緣計(jì)算和云計(jì)算在預(yù)測(cè)性維護(hù)中的作用
云端超級(jí)計(jì)算機(jī)使用教程
機(jī)智云榮登2024邊緣計(jì)算TOP100榜單
英特爾攜手浪潮信息從邊緣計(jì)算向邊緣智算邁進(jìn)
邊緣計(jì)算網(wǎng)關(guān)五大核心特點(diǎn)
邊緣計(jì)算的技術(shù)挑戰(zhàn)與解決方案
邊緣計(jì)算對(duì)網(wǎng)絡(luò)延遲的影響
邊緣計(jì)算與云計(jì)算的區(qū)別
云計(jì)算遷移的步驟與注意事項(xiàng)
云計(jì)算與邊緣計(jì)算的結(jié)合
云端超級(jí)計(jì)算機(jī)怎么用
如何理解云計(jì)算?
邊緣計(jì)算與智能化網(wǎng)絡(luò)的結(jié)合可以實(shí)現(xiàn)以下哪些優(yōu)勢(shì)
邊緣計(jì)算網(wǎng)關(guān)數(shù)據(jù)采集流程

評(píng)論