一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器視覺與工業(yè)融合難在哪?

新機(jī)器視覺 ? 來源:工控網(wǎng) ? 作者:工控網(wǎng) ? 2022-11-30 15:40 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

?? 在計(jì)算機(jī)視覺領(lǐng)域中,商湯、曠視、云從、依圖可以說是當(dāng)之無愧的頭部企業(yè),更是被業(yè)內(nèi)稱為CV(ComputerVision)四小龍。值得關(guān)注的是,商湯和云從兩家上市公司都經(jīng)歷了上市即巔峰,隨即股價(jià)下跌的劇情。資本市場(chǎng)表現(xiàn)不佳,深陷裁員等傳聞,不禁讓人好奇:當(dāng)風(fēng)口退去,他們準(zhǔn)備好面對(duì)資本市場(chǎng)最嚴(yán)格的審視了嗎?

研發(fā)成本高、盈利難:

目前業(yè)內(nèi)將虧損的主要原因歸咎于研發(fā),從招股書顯示,商湯科技2018-2021年上半年,累計(jì)虧損242.72億元,調(diào)整后累計(jì)虧損為28.6億元。商湯科技在研發(fā)上十分大手筆。2018-2021年上半年,商湯科技三年半合計(jì)研發(fā)支出達(dá)69.91億元。 云從科技的招股書中也可以看到,2019年-2021年,云從科技三年累計(jì)虧損高達(dá)23.21億元。造成虧損的一大原因是高額的研發(fā)投入占了營收大半,2019年至2021年,云從三年累計(jì)研發(fā)投入占營收的占比為59.39%。 AI的應(yīng)用場(chǎng)景中非常分散和碎片化,客戶的每一個(gè)新場(chǎng)景都需要企業(yè)長(zhǎng)期堆人頭、消耗大量的研發(fā)與交付資源。無論是云從還是商湯,持續(xù)增加的研發(fā)投入,卻換來長(zhǎng)期虧損,這成為籠罩在AI企業(yè)頭頂之上的烏云。

商業(yè)化落地難:

翻閱商湯科技公布的2022年上半年財(cái)報(bào)顯示,公司新增2136項(xiàng)專利,專利資產(chǎn)總數(shù)達(dá)12502個(gè),在全球頂級(jí)計(jì)算機(jī)視覺會(huì)議上發(fā)表了71篇論文。可商業(yè)并非學(xué)術(shù)。如何將技術(shù)規(guī)模化落地到場(chǎng)景中去,并實(shí)現(xiàn)商業(yè)化變現(xiàn),對(duì)于不少計(jì)算機(jī)視覺企業(yè)來說也是一個(gè)難點(diǎn)。 無論是盈利模式還是應(yīng)用落地,在CV領(lǐng)域外,四小龍的AI之路仍充滿著艱難。

計(jì)算機(jī)視覺與工業(yè)界GAP有多大?

從人臉識(shí)別到工業(yè)智造,計(jì)算機(jī)視覺目前已跨越了安防、金融、零售、互聯(lián)網(wǎng)、半導(dǎo)體、汽車等不同垂直行業(yè)。 隨著數(shù)字化轉(zhuǎn)型需求的提升,越來越多的工業(yè)企業(yè)開始應(yīng)用視覺技術(shù)替代人工進(jìn)行工況檢測(cè)、成品檢驗(yàn)、質(zhì)量控制?!八男↓垺痹趹?yīng)用場(chǎng)景的落地上雖然都以比較成熟的安防和金融為主,但查看幾家企業(yè)的網(wǎng)站發(fā)現(xiàn),已有一些企業(yè)開始在工業(yè)領(lǐng)域涉足。 例如,曠視推出的河圖就是面向供應(yīng)鏈物聯(lián)網(wǎng)打造的“機(jī)器人物聯(lián)網(wǎng)操作系統(tǒng)”,重點(diǎn)關(guān)注“倉儲(chǔ)、物流、制造和供應(yīng)鏈”等行業(yè)場(chǎng)景。商湯科技在工業(yè)質(zhì)量控制方面更是已有案例,提供了基于SenseCore 商湯AI大裝置打造的光機(jī)電軟算一體化的深泉工業(yè)質(zhì)檢推訓(xùn)平臺(tái)解決方案。

碎片化場(chǎng)景難以深入

新市場(chǎng)、新賽道的拓展并不容易。對(duì)于計(jì)算機(jī)視覺企業(yè)來說,想要進(jìn)入工業(yè)市場(chǎng),質(zhì)檢、巡檢是主要應(yīng)用場(chǎng)景,但對(duì)于工業(yè)企業(yè)來說,計(jì)算機(jī)視覺只是繁雜工藝中的一環(huán),要嵌入完整的生產(chǎn)線上,必然會(huì)遇到與其他環(huán)節(jié)合作的挑戰(zhàn),甚至與工業(yè)本身的相互磨合。 一個(gè)個(gè)“大而全”的解決方案,看似可以破解一切難題,但往往會(huì)被現(xiàn)實(shí)場(chǎng)景進(jìn)一步削弱。因此,機(jī)器視覺在工業(yè)領(lǐng)域的應(yīng)用需要找到非常有吸引力的差異化場(chǎng)景。 在我們與工業(yè)用戶的接觸中,很多用于都有意愿嘗試通過AI機(jī)器視覺來解決工業(yè)檢測(cè)中的問題,但是客戶對(duì)技術(shù)的成熟度并無概念。視覺算法企業(yè)在面對(duì)千奇百怪的工業(yè)應(yīng)用場(chǎng)景時(shí),也很難保證用戶可以在一定成本內(nèi)達(dá)到預(yù)期效果。 比如在汽車、3C、制藥等行業(yè),他們的共同特點(diǎn)都連續(xù)大批量生產(chǎn)、對(duì)外觀質(zhì)量的要求非常高,但三個(gè)行業(yè)的被測(cè)物一致性、對(duì)視覺系統(tǒng)的分辨率、對(duì)檢測(cè)速度的要求來講,都是不盡相同的。 細(xì)分到不同的工藝環(huán)節(jié),都會(huì)造成機(jī)器視覺系統(tǒng)所需的機(jī)理模型不同。以冶金鋼卷生產(chǎn)缺陷檢測(cè)為例,鋼卷分為冷軋、熱軋,都可以采用機(jī)器視覺技術(shù)進(jìn)行質(zhì)檢,但算法要解決的機(jī)理問題卻又是完全不一樣。一個(gè)企業(yè)、一個(gè)場(chǎng)景,尚無法做到模型的通用化,而一對(duì)一模型的定制開發(fā),又會(huì)導(dǎo)致落地成本和實(shí)施周期的增加。 從若干客戶的各種具體應(yīng)用場(chǎng)景中對(duì)解決方案進(jìn)行總結(jié)研發(fā),提煉出在一定應(yīng)用場(chǎng)景下相對(duì)普適性的解決方案,并設(shè)計(jì)有效的機(jī)器視覺解決方案,需要大量的行業(yè)應(yīng)用經(jīng)驗(yàn)積累。 因此,想在工業(yè)場(chǎng)景中拓展智能化應(yīng)用,光有算法實(shí)力是不行的,還必須具備相當(dāng)深刻的行業(yè)知識(shí)。對(duì)于工業(yè)領(lǐng)域來說,不一定需要多復(fù)雜的算法,而是更多地受到其他現(xiàn)實(shí)因素的影響。他們更注重豐富的行業(yè)應(yīng)用經(jīng)驗(yàn),算法應(yīng)力求簡(jiǎn)單實(shí)用,穩(wěn)定性強(qiáng)。

成熟算法已有

一般來說,掌握底層軟件算法的公司更容易形成自身優(yōu)勢(shì)。但在工業(yè)領(lǐng)域,成熟的視覺算法軟件已經(jīng)有很多,包括vision pro、halcon、opevCV、mil、hexsight、evision、avl等。例如,非常成熟的檢測(cè)算法Halcon,經(jīng)過長(zhǎng)期的積累和迭代,不僅非常穩(wěn)定而且計(jì)算量小,還不用標(biāo)注數(shù)據(jù)和調(diào)參。 在算法側(cè)重上,工業(yè)視覺的算法往往側(cè)重于精確度的提高;而計(jì)算機(jī)視覺的算法難度相對(duì)較高,側(cè)重于或采用數(shù)學(xué)邏輯或采用深度學(xué)習(xí)方法進(jìn)行物體的標(biāo)定與識(shí)別。
有系統(tǒng)服務(wù)商曾表示,在開發(fā)解決方案的時(shí)候選擇了某品牌的相機(jī),相機(jī)設(shè)備自帶一個(gè)面向工業(yè)視覺的算法庫,買回去之后可以直接開發(fā)出更具針對(duì)性的產(chǎn)品,部署的時(shí)候再買一個(gè)品牌的加密狗就可以了,完全沒有必要再去單獨(dú)購買一套純算法。既然已經(jīng)有了這么多可供選擇的算法,工業(yè)企業(yè)也就完全沒有必要再去選擇純算法公司的產(chǎn)品。

缺乏樣本數(shù)據(jù)

軟件是機(jī)器視覺產(chǎn)業(yè)的核心中樞,其背后的本質(zhì)是數(shù)據(jù)的積累和算法的迭代。在視覺算法層面,一個(gè)最簡(jiǎn)單的思路是針對(duì)特殊場(chǎng)景收集大量數(shù)據(jù)去訓(xùn)練模型。 在工業(yè)場(chǎng)景中,數(shù)據(jù)的收集存在一定問題,樣本數(shù)據(jù)量往往不足以支持基于深度學(xué)習(xí)的計(jì)算機(jī)視覺檢測(cè)任務(wù)。一般來說,不合格缺陷產(chǎn)品的數(shù)量遠(yuǎn)遠(yuǎn)少于合格品,隨機(jī)獲取的數(shù)據(jù)將存在樣本分布不平衡的問題。而且,工業(yè)現(xiàn)場(chǎng)的拍攝環(huán)境復(fù)雜無法保證,容易造成樣本圖像的質(zhì)量不一,從而影響后續(xù)檢測(cè)效果。 機(jī)器視覺領(lǐng)域看似繁榮,但是真正落地仍然面臨很多問題。除了軟件算法層面的問題,光源的穩(wěn)定性、工件位置的穩(wěn)定性、工件表面質(zhì)量的穩(wěn)定性、工件本身的一致性、工件材質(zhì)、物體的運(yùn)動(dòng)速度、光學(xué)系統(tǒng)的精度等都是影響視覺技術(shù)在工業(yè)領(lǐng)域落地的難點(diǎn)。這需要光學(xué),深度學(xué)習(xí)、傳統(tǒng)圖像算法、機(jī)械設(shè)備、傳感器等多方面融合。

對(duì)于工業(yè)用戶來說,合適的硬件及易用的軟件算法固然十分重要,但更重要的是提供軟硬件方案的機(jī)器視覺廠商可以根據(jù)他們的應(yīng)用需要和使用場(chǎng)景進(jìn)行可行性分析,并給出真正適合的解決方案。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 機(jī)器視覺
    +關(guān)注

    關(guān)注

    163

    文章

    4598

    瀏覽量

    122958
  • 工業(yè)
    +關(guān)注

    關(guān)注

    3

    文章

    2085

    瀏覽量

    47981

原文標(biāo)題:機(jī)器視覺與工業(yè)融合,難在哪了?

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    工業(yè)相機(jī)圖像采集卡:機(jī)器視覺的核心樞紐

    工業(yè)相機(jī)圖像采集卡是用于連接工業(yè)相機(jī)與計(jì)算機(jī)的關(guān)鍵硬件設(shè)備,主要負(fù)責(zé)將相機(jī)輸出的圖像信號(hào)轉(zhuǎn)換為計(jì)算機(jī)可處理的數(shù)字信號(hào),并實(shí)現(xiàn)高速、穩(wěn)定的數(shù)據(jù)傳輸。它在工業(yè)自動(dòng)化、機(jī)器
    的頭像 發(fā)表于 05-21 12:13 ?214次閱讀
    <b class='flag-5'>工業(yè)</b>相機(jī)圖像采集卡:<b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺</b>的核心樞紐

    工業(yè)相機(jī):機(jī)器視覺的“核心之眼”,四大分類詳解

    在智能制造和自動(dòng)化生產(chǎn)中,工業(yè)相機(jī)作為機(jī)器視覺系統(tǒng)的核心組件,憑借其高精度、高穩(wěn)定性和快速響應(yīng)能力,被廣泛應(yīng)用于產(chǎn)品質(zhì)量檢測(cè)、尺寸測(cè)量、定位識(shí)別等領(lǐng)域。它通常與工業(yè)鏡頭、
    的頭像 發(fā)表于 05-13 16:30 ?587次閱讀
    <b class='flag-5'>工業(yè)</b>相機(jī):<b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺</b>的“核心之眼”,四大分類詳解

    工業(yè)一體機(jī)應(yīng)用在機(jī)器視覺領(lǐng)域上都有哪些常見性能優(yōu)勢(shì)?

    隨著工業(yè)化的進(jìn)程和技術(shù)的不斷發(fā)展,工業(yè)機(jī)器視覺成為現(xiàn)代工業(yè)生產(chǎn)中不可或缺的一部分。作為工業(yè)
    的頭像 發(fā)表于 05-06 11:50 ?185次閱讀

    【「# ROS 2智能機(jī)器人開發(fā)實(shí)踐」閱讀體驗(yàn)】視覺實(shí)現(xiàn)的基礎(chǔ)算法的應(yīng)用

    結(jié)合IMU(慣性測(cè)量單元)進(jìn)行多傳感器融合。 三、總結(jié)與展望 技術(shù)融合趨勢(shì) 機(jī)器視覺與SLAM的結(jié)合(如視覺慣性里程計(jì)VIO)是當(dāng)前研
    發(fā)表于 05-03 19:41

    從3D到AI,機(jī)器視覺全面賦能工業(yè)自動(dòng)化

    電子發(fā)燒友網(wǎng)報(bào)道(文/吳子鵬)機(jī)器視覺作為人工智能與工業(yè)自動(dòng)化深度融合的核心技術(shù),近年來在算法創(chuàng)新、硬件迭代以及行業(yè)應(yīng)用等方面均實(shí)現(xiàn)了跨越式發(fā)展,推動(dòng)終端市場(chǎng)應(yīng)用持續(xù)迭代升級(jí)。根據(jù) G
    的頭像 發(fā)表于 04-08 01:03 ?2057次閱讀

    德晟達(dá)高性能服務(wù)器助力工業(yè)機(jī)器視覺落地

    處理以及多模態(tài)數(shù)據(jù)融合。在此背景下,服務(wù)器集群作為核心算力基礎(chǔ)設(shè)施,其高性能計(jì)算、低延遲推理及高可靠性特性,已成為支撐工業(yè)機(jī)器視覺系統(tǒng)規(guī)模化部署的關(guān)鍵技術(shù)底座。
    的頭像 發(fā)表于 03-11 17:22 ?699次閱讀

    2025上海機(jī)器視覺展同期活動(dòng)精彩紛呈,速來免費(fèi)報(bào)名!

    質(zhì)檢應(yīng)用 ,這一創(chuàng)新成果不僅標(biāo)志著聯(lián)想在AI與機(jī)器視覺技術(shù)融合應(yīng)用上的重大突破,更預(yù)示著工業(yè)質(zhì)檢領(lǐng)域即將迎來一場(chǎng)革命性的變革。 02?機(jī)器
    發(fā)表于 03-11 11:01 ?271次閱讀
    2025上海<b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺</b>展同期活動(dòng)精彩紛呈,速來免費(fèi)報(bào)名!

    工業(yè)自動(dòng)化中機(jī)器視覺技術(shù)的演變和未來發(fā)展趨勢(shì)

    機(jī)器視覺是一項(xiàng)使機(jī)器工業(yè)設(shè)備能夠解釋和分析視覺數(shù)據(jù)的技術(shù),它將計(jì)算機(jī)科學(xué)與圖像處理技術(shù)相結(jié)合,實(shí)現(xiàn)了自動(dòng)化的
    的頭像 發(fā)表于 03-06 11:39 ?956次閱讀
    <b class='flag-5'>工業(yè)</b>自動(dòng)化中<b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺</b>技術(shù)的演變和未來發(fā)展趨勢(shì)

    機(jī)器視覺技術(shù):照亮工業(yè)4.0未來征途,報(bào)名火熱進(jìn)行中

    中國(上海)機(jī)器視覺展暨機(jī)器視覺技術(shù)及工業(yè)應(yīng)用研討會(huì)將于 2025年3月26-28日在上海新國際博覽中心W4&W5館 舉辦。
    發(fā)表于 12-20 14:09 ?207次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺</b>技術(shù):照亮<b class='flag-5'>工業(yè)</b>4.0未來征途,報(bào)名火熱進(jìn)行中

    工業(yè)機(jī)器視覺算控融合一體化套件方案,賦能工業(yè)智造

    文以 《工業(yè)機(jī)器視覺算控融合一體化套件方案介紹》 為主題,分享了他對(duì)工業(yè)機(jī)器
    的頭像 發(fā)表于 12-19 16:44 ?497次閱讀
    <b class='flag-5'>工業(yè)</b><b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺</b>算控<b class='flag-5'>融合</b>一體化套件方案,賦能<b class='flag-5'>工業(yè)</b>智造

    AI干貨補(bǔ)給站 | 深度學(xué)習(xí)與機(jī)器視覺融合探索

    ,幫助從業(yè)者積累行業(yè)知識(shí),推動(dòng)工業(yè)視覺應(yīng)用的快速落地。本期亮點(diǎn)預(yù)告本期將以“深度學(xué)習(xí)與機(jī)器視覺融合探索”為主題,通過講解深度學(xué)習(xí)定義、傳統(tǒng)
    的頭像 發(fā)表于 10-29 08:04 ?581次閱讀
    AI干貨補(bǔ)給站 | 深度學(xué)習(xí)與<b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺</b>的<b class='flag-5'>融合</b>探索

    國產(chǎn)晶振/溫補(bǔ)晶振兼容SiTime廣泛用于工業(yè)機(jī)器視覺

    國產(chǎn)晶振/溫補(bǔ)晶振兼容SiTime廣泛用于工業(yè)機(jī)器視覺
    的頭像 發(fā)表于 10-22 09:46 ?593次閱讀
    國產(chǎn)晶振/溫補(bǔ)晶振兼容SiTime廣泛用于<b class='flag-5'>工業(yè)</b><b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺</b>

    機(jī)器視覺系統(tǒng)硬件組成之工業(yè)相機(jī)篇

    工業(yè)相機(jī)是一種非常重要的機(jī)器視覺器件,它能夠?qū)⒈徊杉膱D像信息通過電路轉(zhuǎn)換成電信號(hào),再通過模數(shù)轉(zhuǎn)換器(ADC)將其轉(zhuǎn)化為數(shù)字信號(hào),最后以標(biāo)準(zhǔn)的視頻信號(hào)輸出。工業(yè)相機(jī)在
    的頭像 發(fā)表于 10-18 16:47 ?2668次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>視覺</b>系統(tǒng)硬件組成之<b class='flag-5'>工業(yè)</b>相機(jī)篇

    精密制造的革新:光譜共焦傳感器與工業(yè)視覺相機(jī)的融合

    在現(xiàn)代精密制造領(lǐng)域,對(duì)微小尺寸、高精度產(chǎn)品的檢測(cè)需求日益迫切。光譜共焦傳感器憑借其非接觸、高精度測(cè)量特性脫穎而出,而工業(yè)視覺相機(jī)則以其高分辨率、實(shí)時(shí)成像能力著稱。兩者的融合,不僅解決了傳統(tǒng)檢測(cè)方式在
    的頭像 發(fā)表于 09-26 11:47 ?644次閱讀

    視覺檢測(cè)是什么意思?機(jī)器視覺檢測(cè)的適用行業(yè)及場(chǎng)景有哪些?

    在快速迭代的工業(yè)世界中,機(jī)器視覺檢測(cè)以其精準(zhǔn)、高效的力量,已成為眾多產(chǎn)業(yè)不可或缺的技術(shù)支持。本文將深入探討機(jī)器視覺檢測(cè)的含義、應(yīng)用行業(yè)及具體
    的頭像 發(fā)表于 08-30 11:20 ?908次閱讀