一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

缺陷檢測算法匯總(傳統(tǒng)+深度學(xué)習(xí)方式)|綜述、源碼

3D視覺工坊 ? 來源:3D視覺工坊 ? 作者:3D視覺工坊 ? 2022-12-12 10:37 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

計算機視覺領(lǐng)域,目標(biāo)檢測發(fā)展迅速,出現(xiàn)了基于機器視覺技術(shù)的表面缺陷檢測技術(shù)。這種技術(shù)的出現(xiàn),越來越多的制造企業(yè)正在嘗試將機器視覺檢測技術(shù)引入產(chǎn)品缺陷檢測。

目前基于機器視覺的缺陷檢測技術(shù)已經(jīng)大量應(yīng)用于紡織品、汽車零部件、半導(dǎo)體、光伏組件等產(chǎn)品的缺陷檢測中,大大提升了制造業(yè)的質(zhì)檢效率。

機器視覺在工業(yè)缺陷檢測中的前景毋庸置疑,而工業(yè)制造領(lǐng)域的多樣性、生產(chǎn)環(huán)境的復(fù)雜性、產(chǎn)品缺陷的非標(biāo)性等因素,都給機器視覺在缺陷檢測的實際應(yīng)用帶來了諸多挑戰(zhàn)。

96f1b486-79b5-11ed-8abf-dac502259ad0.jpg

缺陷檢測面臨的挑戰(zhàn)以及未來的可創(chuàng)新方向,天然的吸引著關(guān)注。畢竟不論是為了畢業(yè)還是申博亦或是未來的就業(yè)機會。論文都是繞不開的永恒話題,而沒有創(chuàng)新,就沒有好的論文。

面前擺放著缺陷檢測這盤“當(dāng)紅辣子雞”,剩下的工作就是如何找創(chuàng)新點、get idea,寫好論文了。寫出好的論文,才是硬道理~

為了找到創(chuàng)新方向,大量精讀前沿論文是必不可少的一步。

但其實,精讀論文只是第一步。

后面更重要的是,通過精讀進行論文復(fù)現(xiàn)、從優(yōu)秀的工作中找到靈感、為自己的工作提供營養(yǎng)……

更可怕的是,在第一步就被卡住。

不免感慨,如果有一位科研過硬的前輩指導(dǎo),天下哪還有難讀的論文……

畢竟導(dǎo)師總是放養(yǎng),師哥師姐也總是忙……

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 半導(dǎo)體
    +關(guān)注

    關(guān)注

    335

    文章

    28885

    瀏覽量

    237467
  • 計算機視覺
    +關(guān)注

    關(guān)注

    9

    文章

    1708

    瀏覽量

    46765
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122782

原文標(biāo)題:缺陷檢測算法匯總(傳統(tǒng)+深度學(xué)習(xí)方式)|綜述、源碼

文章出處:【微信號:3D視覺工坊,微信公眾號:3D視覺工坊】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    基于RK3576開發(fā)板的車輛檢測算法

    車輛檢測是一種基于深度學(xué)習(xí)的對人進行檢測定位的目標(biāo)檢測,能廣泛的用于園區(qū)管理、交通分析等多種場景,是違停識別、堵車識別、車流統(tǒng)計等多種
    的頭像 發(fā)表于 05-08 17:34 ?909次閱讀
    基于RK3576開發(fā)板的車輛<b class='flag-5'>檢測算法</b>

    基于RK3576開發(fā)板的安全帽檢測算法

    安全帽佩戴檢測是工地、生產(chǎn)安全、安防的重中之重,但人為主觀檢測方式時效性差且不能全程監(jiān)控。AI技術(shù)的日漸成熟催生了安全帽佩戴檢測方案,成為了監(jiān)督佩戴安全帽的利器。本安全帽
    的頭像 發(fā)表于 05-08 16:59 ?1582次閱讀
    基于RK3576開發(fā)板的安全帽<b class='flag-5'>檢測算法</b>

    基于RK3576開發(fā)板的人員檢測算法

    展示了RK3576開發(fā)板的人員檢測算法例程及API說明
    的頭像 發(fā)表于 05-07 17:33 ?290次閱讀
    基于RK3576開發(fā)板的人員<b class='flag-5'>檢測算法</b>

    基于RV1126開發(fā)板的車輛檢測算法開發(fā)

    車輛檢測是一種基于深度學(xué)習(xí)的對人進行檢測定位的目標(biāo)檢測,能廣泛的用于園區(qū)管理、交通分析等多種場景,是違停識別、堵車識別、車流統(tǒng)計等多種
    的頭像 發(fā)表于 04-14 16:00 ?290次閱讀
    基于RV1126開發(fā)板的車輛<b class='flag-5'>檢測算法</b>開發(fā)

    基于RV1126開發(fā)板的安全帽檢測算法開發(fā)

    安全帽佩戴檢測是工地、生產(chǎn)安全、安防的重中之重,但人為主觀檢測方式時效性差且不能全程監(jiān)控。AI技術(shù)的日漸成熟催生了安全帽佩戴檢測方案,成為了監(jiān)督佩戴安全帽的利器。本安全帽
    的頭像 發(fā)表于 04-14 15:10 ?280次閱讀
    基于RV1126開發(fā)板的安全帽<b class='flag-5'>檢測算法</b>開發(fā)

    基于RV1126開發(fā)板的人臉檢測算法開發(fā)

    在RV1126上開發(fā)人臉檢測算法組件
    的頭像 發(fā)表于 04-14 10:19 ?321次閱讀
    基于RV1126開發(fā)板的人臉<b class='flag-5'>檢測算法</b>開發(fā)

    軒轅智駕紅外目標(biāo)檢測算法在汽車領(lǐng)域的應(yīng)用

    在 AI 技術(shù)蓬勃發(fā)展的當(dāng)下,目標(biāo)檢測算法取得了重大突破,其中紅外目標(biāo)檢測算法更是在汽車行業(yè)掀起了波瀾壯闊的變革,從根本上重塑著汽車的安全性能、駕駛體驗與產(chǎn)業(yè)生態(tài)。
    的頭像 發(fā)表于 03-27 15:55 ?407次閱讀

    睿創(chuàng)微納推出新一代目標(biāo)檢測算法

    隨著AI技術(shù)的發(fā)展,目標(biāo)檢測算法也迎來重大突破。睿創(chuàng)微納作為熱成像領(lǐng)軍者,憑借深厚的技術(shù)積累與創(chuàng)新能力,結(jié)合AI技術(shù)推出新一代目標(biāo)檢測算法,以三大核心技術(shù)帶來AI視覺感知全場景解決方案突破,助力各產(chǎn)業(yè)智能化升級。
    的頭像 發(fā)表于 03-20 13:49 ?423次閱讀

    行業(yè)首創(chuàng):基于深度學(xué)習(xí)視覺平臺的AI驅(qū)動輪胎檢測自動化

    全球領(lǐng)先的輪胎制造商 NEXEN TIRE 在其輪胎生產(chǎn)檢測過程中使用了基于友思特伙伴Neurocle開發(fā)的AI深度學(xué)習(xí)視覺平臺,實現(xiàn)缺陷檢測
    的頭像 發(fā)表于 03-19 16:51 ?439次閱讀
    行業(yè)首創(chuàng):基于<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>視覺平臺的AI驅(qū)動輪胎<b class='flag-5'>檢測</b>自動化

    傳統(tǒng)機器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    用于開發(fā)生物學(xué)數(shù)據(jù)的機器學(xué)習(xí)方法。盡管深度學(xué)習(xí)(一般指神經(jīng)網(wǎng)絡(luò)算法)是一個強大的工具,目前也非常流行,但它的應(yīng)用領(lǐng)域仍然有限。與深度
    的頭像 發(fā)表于 12-30 09:16 ?1180次閱讀
    <b class='flag-5'>傳統(tǒng)</b>機器<b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    NPU在深度學(xué)習(xí)中的應(yīng)用

    設(shè)計的硬件加速器,它在深度學(xué)習(xí)中的應(yīng)用日益廣泛。 1. NPU的基本概念 NPU是一種專門針對深度學(xué)習(xí)算法優(yōu)化的處理器,它與
    的頭像 發(fā)表于 11-14 15:17 ?1898次閱讀

    FPGA做深度學(xué)習(xí)能走多遠?

    并行計算的能力,可以在硬件層面并行處理大量數(shù)據(jù)。這種并行處理能力使得 FPGA 在執(zhí)行深度學(xué)習(xí)算法時速度遠超傳統(tǒng)處理器,能夠提供更低的延遲和更高的吞吐量,從而加速模型訓(xùn)練和推理過程,滿
    發(fā)表于 09-27 20:53

    深度識別算法包括哪些內(nèi)容

    :CNN是深度學(xué)習(xí)中處理圖像和視頻等具有網(wǎng)格結(jié)構(gòu)數(shù)據(jù)的主要算法。它通過卷積層、池化層和全連接層等組件,實現(xiàn)對圖像特征的自動提取和識別。 應(yīng)用領(lǐng)域 :CNN在圖像識別、目標(biāo)檢測、視頻分
    的頭像 發(fā)表于 09-10 15:28 ?834次閱讀

    圖像識別算法都有哪些方法

    傳統(tǒng)方法和基于深度學(xué)習(xí)的方法。 傳統(tǒng)圖像識別算法 1.1 邊緣檢測 邊緣
    的頭像 發(fā)表于 07-16 11:14 ?7463次閱讀

    深度學(xué)習(xí)算法在嵌入式平臺上的部署

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)算法在各個領(lǐng)域的應(yīng)用日益廣泛。然而,將深度學(xué)習(xí)算法部署到資源
    的頭像 發(fā)表于 07-15 10:03 ?3183次閱讀