01導(dǎo)讀
金剛石中的氮-空位(NV)色心是一種可在室溫下操作的優(yōu)良量子體系, 因具有獨(dú)特的電子自旋態(tài)及其可光學(xué)讀取特性,近年來已迅速發(fā)展成為一種可探測多種物理量和生物對象的有力手段。近日,暨南大學(xué)羅云瀚教授、陳耀飛副教授團(tuán)隊(duì)提出了一種基于納米金剛石NV色心的光纖量子探針,并實(shí)現(xiàn)高靈敏的磁場和生物傳感。
在此工作中,他們通過化學(xué)修飾的方法將納米金剛石集成在錐形光纖端面上,從而制備出該探針,研究發(fā)現(xiàn)可通過優(yōu)化修飾過程來調(diào)控探針的傳感性能;采用連續(xù)波光探測磁共振方法并利用磁通量集中增強(qiáng)技術(shù),實(shí)驗(yàn)獲得了0.57 nT/Hz1/2@ 1Hz的磁探測靈敏度;該探針還表現(xiàn)出優(yōu)異的順磁性物質(zhì)探測能力,為進(jìn)一步開發(fā)出高性能生物傳感器提供了基礎(chǔ)。
02研究背景
NV色心(本文均指帶有一個(gè)負(fù)電荷的NV-)屬于金剛石晶格中的一種發(fā)光點(diǎn)缺陷,它由一個(gè)氮原子取代碳原子,同時(shí)在鄰近位點(diǎn)存在一個(gè)空位而產(chǎn)生。NV色心具有極好的發(fā)光穩(wěn)定性、無漂白、室溫下光學(xué)可讀的電子自旋態(tài)等特性,利用易于實(shí)現(xiàn)的光探測磁共振(ODMR)方法,可對任何影響電子自旋狀態(tài)的參量進(jìn)行探測,而且在對磁場、溫度、電場等物理參數(shù)的傳感方面,基于NV色心的傳感器相較于傳統(tǒng)傳感器在靈敏度和空間分辨率等方面均顯示出了極大的優(yōu)勢。該類傳感器的實(shí)現(xiàn)一般采用空間光耦合的形式,即使用顯微鏡物鏡或透鏡將泵浦激光聚焦在金剛石上,金剛石發(fā)射的熒光由相同或附加的裝置收集,這種形式靈活且易于實(shí)現(xiàn),但傳感器的集成度較差。
盡管有工作在緊湊性和便攜性方面取得了進(jìn)展,但這是以犧牲空間分辨率為代價(jià)的。采用光纖集成形式則是一種有效的解決方案,它充分利用了光纖的特性(柔性光路、可遠(yuǎn)距離傳輸、小尺寸),同時(shí)保證了空間分辨率和集成度。本文提出了一種新型的集成納米金剛石NV色心的光纖量子探針,并將其應(yīng)用于磁場和順磁性物質(zhì)的檢測,為高性能光纖磁場和生物傳感器實(shí)現(xiàn)提供了良好的范例。
03創(chuàng)新研究
3.1探針的制備和表征
光纖量子探針的制備可分為四個(gè)步驟。首先,將一光纖末端插入氫氟酸中,通過腐蝕來獲得錐形光纖端面;其次,將錐形光纖端插入食人魚溶液中浸泡約30分鐘,使其表面修飾上羥基;然后,再將清洗后的光纖端插入到APTES溶液中6小時(shí),使光纖表面修飾上氨基;最后,將光纖插入到羧基化納米金剛石與EDC/NHS的混合分散液中,利用羧基-氨基之間的縮合反應(yīng)將納米金剛石固定在光纖表面。
圖2 探針的制備過程示意圖
圖源: ACS Sensors(2022).
腐蝕得到的錐形光纖端面經(jīng)光學(xué)顯微鏡表征,測得錐尖長度約為270 μm;納米金剛石顆粒經(jīng)SEM表征其形貌和尺寸(約為100nm),經(jīng)FTIR和發(fā)光譜測試證明其包含NV色心且表面攜帶羧基;制備得到的光纖量子探針,先后經(jīng)熒光顯微鏡和光譜儀測試,結(jié)果表明可通過優(yōu)化修飾過程中納米金剛石分散液濃度和修飾時(shí)間提升熒光信號強(qiáng)度。
圖3 探針表征。(a)光學(xué)顯微鏡觀察到的光纖錐。(b)納米金剛石的SEM圖像。(c)金剛石NV色心的發(fā)光譜。(d)不同金剛石濃度修飾下的探針熒光顯微鏡圖。(e)不同修飾時(shí)間下的探針熒光顯微鏡圖。
圖源: ACS Sensors(2022).
3.2 磁探測性能測試
對制備完成的光纖量子探針進(jìn)行磁探測性能測試。隨著施加在探針上的磁場強(qiáng)度的增加,測得的ODMR譜線以ν0(~2.87GHz,對應(yīng)于基態(tài)|±1>之間的能級劈裂)為中心向兩邊展寬。采用磁通量集中增強(qiáng)技術(shù),將探針的磁電轉(zhuǎn)換系數(shù)和磁場探測靈敏度分別提升至1458.66 V/T和0.57 nT/Hz1/2@1Hz,相較于未采用磁通量增強(qiáng)的情況均有近兩個(gè)量級的提升,這也是首次將基于納米金剛石的光纖磁場傳感器靈敏度提升至皮特斯拉量級。此外,通過對光纖錐結(jié)構(gòu)和磁通量聚集裝置參數(shù)的優(yōu)化,預(yù)期實(shí)現(xiàn)靈敏度的進(jìn)一步提升。
圖4 磁探測性能測試。(a)測試系統(tǒng)示意圖。(b)施加有磁通量聚集裝置的光纖探針。(c)不同磁場強(qiáng)度下的ODMR譜線圖。(d)磁噪聲幅度譜密度。
圖源: ACS Sensors(2022).
3.3 順磁性物質(zhì)探測實(shí)驗(yàn)
對制備完成的光纖量子探針進(jìn)行順磁性物質(zhì)傳感測試。順磁性物質(zhì)如自由基和順磁性金屬蛋白,其特點(diǎn)是價(jià)層中含有一個(gè)或多個(gè)未配對電子。越來越多的研究表面順磁性物質(zhì)在腫瘤生長、免疫反應(yīng)、代謝等多種生理過程中起著至關(guān)重要的作用,并且內(nèi)源性順磁性物質(zhì)已成為多種疾病的生物標(biāo)志物。
因此,對順磁性物質(zhì)的傳感顯得十分重要。釓離子(Gd3+)是順磁性物質(zhì)中的一種,其被廣泛用作核磁共振造影劑,在4f亞層中擁有7個(gè)未成對電子,因此表現(xiàn)出強(qiáng)順磁性。在實(shí)驗(yàn)中,Gd3+產(chǎn)生的磁自旋噪聲能延伸至GHz范圍,其頻率分量對應(yīng)于NV色心的拉莫爾進(jìn)動,因此Gd3+對NV色心的影響以降低其極化率的形式呈現(xiàn),最終表現(xiàn)為熒光強(qiáng)度的降低。
實(shí)驗(yàn)中對Gd3+濃度從100nM至3M進(jìn)行了梯度測試,隨著Gd3+濃度的增加,ODMR譜線對比度明顯降低,諧振頻率保持不變, Gd3+的檢測靈敏度約為26.8 nM/Hz1/2。作為對照,對La3+進(jìn)行相同條件下測試(化學(xué)性質(zhì)類似于Gd3+,但沒有任何未配對的電子即表現(xiàn)為非順磁性),此時(shí)ODMR譜線幾乎不受La3+濃度影響。
圖5 順磁性物質(zhì)探測。(a)順磁性Gd3+作用于納米金剛石NV色心示意圖,以及不同濃度下ODMR譜線情況。(b)對照實(shí)驗(yàn):非順磁性La3+與NV色心無相互作用,以及不同濃度下ODMR譜線情況。
圖源: ACS Sensors(2022).
綜上所述,本工作提出并驗(yàn)證了一種利用金剛石NV色心作為量子探針的新結(jié)構(gòu)。該探針通過化學(xué)共價(jià)鍵將含有NV色心的納米金剛石固定在錐形光纖尖端,并基于連續(xù)波ODMR方法和鎖相放大技術(shù)應(yīng)用于磁場和順磁性物質(zhì)的傳感,在實(shí)驗(yàn)中分別獲得了0.57 nT/Hz1/2@ 1Hz和26.8 nM/Hz1/2的靈敏度。本工作所提出的基于金剛石NV色心傳感方法為研制集成度高、體積小、靈敏度高的多功能光纖量子探針奠定了基礎(chǔ)。
審核編輯:劉清
-
光譜儀
+關(guān)注
關(guān)注
2文章
1100瀏覽量
31662 -
顯微鏡
+關(guān)注
關(guān)注
0文章
620瀏覽量
24273 -
生物傳感器
+關(guān)注
關(guān)注
12文章
385瀏覽量
37898 -
FTIR
+關(guān)注
關(guān)注
0文章
33瀏覽量
9187 -
EDC
+關(guān)注
關(guān)注
0文章
8瀏覽量
3889
原文標(biāo)題:ACS Sensors:用于磁場和生物傳感的集成納米金剛石的光纖量子探針
文章出處:【微信號:光纖傳感Focus,微信公眾號:光纖傳感Focus】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
壓電納米定位系統(tǒng)搭檔金剛石色心-在納米尺度上捕捉量子世界的奧秘

合成金剛石在半導(dǎo)體與量子領(lǐng)域的突破性應(yīng)用

大尺寸單晶金剛石襯底制備技術(shù)突破與挑戰(zhàn)

化合積電推出硼摻雜單晶金剛石,推動金剛石器件前沿應(yīng)用與開發(fā)

優(yōu)化單晶金剛石內(nèi)部缺陷:高溫退火技術(shù)

革新突破:高性能多晶金剛石散熱片引領(lǐng)科技新潮流
金剛石:從合成到應(yīng)用的未來材料

探討金剛石增強(qiáng)復(fù)合材料:金剛石/銅、金剛石/鎂和金剛石/鋁復(fù)合材料
歐盟批準(zhǔn)西班牙補(bǔ)貼金剛石晶圓廠
探秘合成大尺寸單晶金剛石的路線與難題

金剛石遇上激光:不同激光類型加工效果大揭秘

評論