一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

機器學習算法的分類

RG15206629988 ? 來源:行業(yè)學習與研究 ? 2023-04-18 16:26 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

一、監(jiān)督學習根據有無標簽分類

根據有無標簽,監(jiān)督學習可分類為:傳統的監(jiān)督學習(Traditional Supervised Learning)、非監(jiān)督學習(Unsupervised Learning)、半監(jiān)督學習(Semi-supervised Learning)。

(1)傳統的監(jiān)督學習

傳統的監(jiān)督學習的每個訓練數據均具有標簽(標簽可被理解為每個訓練數據的正確輸出,計算機可通過其輸出值與標簽對比進行機器學習)。傳統的監(jiān)督學習包括:支持向量機(Support Vector Machine)、人工神經網絡 (Neural Networks)、深度神經網絡(Deep Neural Networks)。

(2)非監(jiān)督學習

非監(jiān)督學習的所有數據均沒有標簽。非監(jiān)督學習假設同一類訓練數據在空間中距離更近(個人理解:例如將若干含有兩個變量的訓練數據繪制于平面直角坐標系中,同一類訓練數據在坐標系中的距離更近),計算機可根據樣本空間信息,將空間距離更近的數據分為一類。非監(jiān)督學習包括:聚類(Clustering)、EM算法(Expectation-Maximization Algorithm)、主成分分析(Principle Component Analysis)。

7a965128-ddc1-11ed-bfe3-dac502259ad0.png

圖片來源:中國慕課大學《機器學習概論》

(3)半監(jiān)督學習

半監(jiān)督學習中,一部分訓練數據具有標簽,一部分訓練數據沒有標簽。因為隨著互聯網的普及,互聯網中存在大量數據,將所有互聯網數據進行標注的耗費較大,所以研究如何通過少量標注數據和大量未標注數據共同訓練機器學習算法,即半監(jiān)督學習成為機器學習的研究方向之一。

二、監(jiān)督學習根據標簽固有屬性分類

根據標簽固有屬性,監(jiān)督學習可被分為分類(Classification)和回歸(Regression)。如果標簽是離散的值,該種監(jiān)督學習被稱為分類;如果標簽是連續(xù)的值,該種監(jiān)督學習被稱為回歸。

7a9d914a-ddc1-11ed-bfe3-dac502259ad0.png

圖片來源:中國慕課大學《機器學習概論》

人臉識別屬于監(jiān)督學習中的分類。人臉識別的任務包括兩個:其一是識別兩張人臉圖片是否為同一個人,開發(fā)人員可將兩張人臉圖片是同一個人的標簽定義為1,將兩張人臉圖片不是同一個人的標簽定義為0;其二是在多張人臉圖片(也可以是多個人臉在一張圖片中)識別某個人臉,開發(fā)人員可將每個人臉定義標簽為一個數字,可根據數字1、2、3……N的順序為每個人臉定義標簽。以上人臉識別兩個任務的標簽均是離散的值。

7ab17aca-ddc1-11ed-bfe3-dac502259ad0.png

圖片來源:中國慕課大學《機器學習概論》

預測股票價格、預測房價、預測溫度、預測年齡等問題屬于監(jiān)督學習問題中的回歸問題。一般,股票、房價、溫度、年齡變化的數據(個人理解:此處的數據可被理解為標簽)可被視為連續(xù)的值。

雖然監(jiān)督學習可被分為分類和回歸,但分類和回歸的界限是模糊的,二者可以相互轉換,這是由于連續(xù)數據和離散數據是可以相互轉換的。例如:如果將房價值四舍五入,得出一組離散的數據(標簽),那么預測房價問題可屬于分類問題。因此,一個可以解決回歸問題的機器學習算法經過較少的改造可解決分類問題,反之亦然。






審核編輯:劉清

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4814

    瀏覽量

    103533
  • 計算機
    +關注

    關注

    19

    文章

    7658

    瀏覽量

    90736
  • 機器學習
    +關注

    關注

    66

    文章

    8501

    瀏覽量

    134564

原文標題:機器學習相關介紹(3)——機器學習算法的分類(下)

文章出處:【微信號:行業(yè)學習與研究,微信公眾號:行業(yè)學習與研究】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    【「# ROS 2智能機器人開發(fā)實踐」閱讀體驗】視覺實現的基礎算法的應用

    。 學習建議 對于初學者,建議先通過仿真(如Gazebo)驗證算法,再遷移到真實機器人,以降低硬件調試成本。 多參與開源社區(qū)(如ROS2的GitHub項目),學習前沿技術并貢獻代碼
    發(fā)表于 05-03 19:41

    基于RV1126開發(fā)板實現自學習圖像分類方案

    在RV1126開發(fā)板上實現自學習:在識別前對物體圖片進行模型學習,訓練完成后通過算法分類得出圖像的模型ID。 方案設計邏輯流程圖,方案代碼分為分為兩個業(yè)務流程,主體代碼負
    的頭像 發(fā)表于 04-21 13:37 ?11次閱讀
    基于RV1126開發(fā)板實現自<b class='flag-5'>學習</b>圖像<b class='flag-5'>分類</b>方案

    請問STM32部署機器學習算法硬件至少要使用哪個系列的芯片?

    STM32部署機器學習算法硬件至少要使用哪個系列的芯片?
    發(fā)表于 03-13 07:34

    機器學習模型市場前景如何

    當今,隨著算法的不斷優(yōu)化、數據量的爆炸式增長以及計算能力的飛速提升,機器學習模型的市場前景愈發(fā)廣闊。下面,AI部落小編將探討機器學習模型市場
    的頭像 發(fā)表于 02-13 09:39 ?358次閱讀

    xgboost在圖像分類中的應用

    XGBoost(eXtreme Gradient Boosting)是一種高效的機器學習算法,它基于梯度提升框架,通過構建多個弱學習器(通常是決策樹)來提高模型的性能。XGBoost因
    的頭像 發(fā)表于 01-19 11:16 ?986次閱讀

    華為云 Flexus X 實例部署安裝 Jupyter Notebook,學習 AI,機器學習算法

    前言 由于本人最近在學習一些機器算法,AI 算法的知識,需要搭建一個學習環(huán)境,所以就在最近購買的華為云 Flexus X 實例上安裝了
    的頭像 發(fā)表于 01-02 13:43 ?530次閱讀
    華為云 Flexus X 實例部署安裝 Jupyter Notebook,<b class='flag-5'>學習</b> AI,<b class='flag-5'>機器</b><b class='flag-5'>學習</b><b class='flag-5'>算法</b>

    傳統機器學習方法和應用指導

    在上一篇文章中,我們介紹了機器學習的關鍵概念術語。在本文中,我們會介紹傳統機器學習的基礎知識和多種算法特征,供各位老師選擇。 01 傳統
    的頭像 發(fā)表于 12-30 09:16 ?1178次閱讀
    傳統<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法和應用指導

    什么是機器學習?通過機器學習方法能解決哪些問題?

    來源:Master編程樹“機器學習”最初的研究動機是讓計算機系統具有人的學習能力以便實現人工智能。因為沒有學習能力的系統很難被認為是具有智能的。目前被廣泛采用的
    的頭像 發(fā)表于 11-16 01:07 ?959次閱讀
    什么是<b class='flag-5'>機器</b><b class='flag-5'>學習</b>?通過<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法能解決哪些問題?

    NPU與機器學習算法的關系

    在人工智能領域,機器學習算法是實現智能系統的核心。隨著數據量的激增和算法復雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學習
    的頭像 發(fā)表于 11-15 09:19 ?1205次閱讀

    主動學習在圖像分類技術中的應用:當前狀態(tài)與未來展望

    本文對近年來提出的主動學習圖像分類算法進行了詳細綜述,并根據所用樣本數據處理及模型優(yōu)化方案,將現有算法分為三類:基于數據增強的算法,包括利用
    的頭像 發(fā)表于 11-14 10:12 ?1260次閱讀
    主動<b class='flag-5'>學習</b>在圖像<b class='flag-5'>分類</b>技術中的應用:當前狀態(tài)與未來展望

    【每天學點AI】KNN算法:簡單有效的機器學習分類

    過程,其實就是一個簡單的分類問題,而KNN(K-NearestNeighbors)算法正是模仿這種人類決策過程的機器學習算法。|什么是KNN
    的頭像 發(fā)表于 10-31 14:09 ?841次閱讀
    【每天學點AI】KNN<b class='flag-5'>算法</b>:簡單有效的<b class='flag-5'>機器</b><b class='flag-5'>學習</b><b class='flag-5'>分類</b>器

    人工智能、機器學習和深度學習存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設備。AI有很多技術,但其中一個很大的子集是機器學習——讓算法從數據中學習。
    發(fā)表于 10-24 17:22 ?2972次閱讀
    人工智能、<b class='flag-5'>機器</b><b class='flag-5'>學習</b>和深度<b class='flag-5'>學習</b>存在什么區(qū)別

    LIBS結合機器學習算法的江西名優(yōu)春茶采收期鑒別

    以廬山云霧茶和狗牯腦茶的明前茶、雨前茶為對象,研究激光誘導擊穿光譜結合機器學習的茶葉鑒別方法。將茶葉茶,水數據融合可有效鑒別春茶采收期,且數據融合后表現出更好的穩(wěn)定性和魯棒性,LIBS結合機器
    的頭像 發(fā)表于 10-22 18:05 ?638次閱讀
    LIBS結合<b class='flag-5'>機器</b><b class='flag-5'>學習</b><b class='flag-5'>算法</b>的江西名優(yōu)春茶采收期鑒別

    【「時間序列與機器學習」閱讀體驗】+ 鳥瞰這本書

    清晰,從時間序列分析的基礎理論出發(fā),逐步深入到機器學習算法在時間序列預測中的應用,內容全面,循序漸進。每一章都經過精心設計,對理論知識進行了詳細的闡述,對實際案例進行了生動的展示,使讀者在理論與實踐
    發(fā)表于 08-12 11:28

    【「時間序列與機器學習」閱讀體驗】全書概覽與時間序列概述

    的應用也很廣泛,用機器學習為時間分析帶來新的可能性。人們往往可以通過過往的時間序列數據來預測未來,在各行各業(yè)中都有很好的應用與發(fā)展前景。 時間序列分類: 1.單維時間序列 單維時間序列指的是一組有順序
    發(fā)表于 08-07 23:03