一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何看待SLAM技術(shù)不用神經(jīng)網(wǎng)絡(luò)進行特征提???

新機器視覺 ? 來源:知乎 ? 2023-05-19 10:21 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

SLAM目前在各領(lǐng)域都已經(jīng)有很多的應(yīng)用,但為什么大部分已經(jīng)落地的都用的還是最傳統(tǒng)的方法,比如目前最主流的ORB-SLAM,即使到ORB3也依舊用的是傳統(tǒng)的FAST和BRIEF方法來檢測和提取特征點,而不用CV領(lǐng)域里早已經(jīng)普遍的神經(jīng)網(wǎng)絡(luò)如VGG等來提取特征點。當然最新的很多語義SLAM論文里都已經(jīng)用到了如GCN等神經(jīng)網(wǎng)絡(luò)提取特征,但為什么目前落地和應(yīng)用的大部分還用的是傳統(tǒng)的方法?提取速度和所需算力應(yīng)該不會有太大差異才是?*

作者:心態(tài)炸裂男孩

談一下個人看法,可能不對。

首先slam是一個偏工程化的應(yīng)用技術(shù)。因此算力成本是一個非常重要的因素。傳統(tǒng)的特征提取速度快,算力成本低,可以在cpu運行。如果利用深度學(xué)習(xí)特征提取,算力包括gpu,深度學(xué)習(xí)特征帶來的額外CPU和內(nèi)存成本。問題是傳統(tǒng)方法特征提取已經(jīng)能滿足大部分場景了。

深度學(xué)習(xí)提取的特征就一定好?顯然不是的。因為數(shù)據(jù)集的原因,利用深度學(xué)習(xí)訓(xùn)練出的特征子適用性并不一定好。貌似網(wǎng)上有一篇論文,利用orbslam框架,對比了orb和superpoint的效果。發(fā)現(xiàn)有幾組superpoint效果確實好,但是有幾個序列視頻利用superpoint的slam直接track lost.這就表現(xiàn)的不好了。

因此在大多數(shù)場景下,傳統(tǒng)特征可以解決。利用深度學(xué)習(xí)特征就顯得畫蛇添足了,沒有必要。當然在某些場景利用傳統(tǒng)特征就不可行。如光照變化劇烈,相機運動劇烈等場景。在long term slam這個話題下,深度學(xué)習(xí)特征效果明顯。

slam方法不僅僅是為了定位,個人覺得slam終極目的是復(fù)用地圖。顯然長時間定位這塊大部分人的目光都是投入到深度學(xué)習(xí)特征上,去superpoints.r2d2特征。畢竟長時間定位會有時間,天氣,光照,動態(tài)物體變化,傳統(tǒng)方法根本就不能解決。而深度學(xué)習(xí)特征卻可以保證長時間定位的準確度。

所以個人看法,雖然深度學(xué)習(xí)特征雖然用的不多。但未來基于深度學(xué)習(xí)特征slam會越來越多。

作者:余世杰

其他答主都說了好多了,算力問題以及提升率啥的。

我個人是覺得還有個原因是,特征匹配在視覺SLAM中的重要性沒有到夸張的地步,在傳統(tǒng)算法情況下,有一定的錯誤匹配也能得到較好的結(jié)果,前端重要的同時,后端更加重要。

那么多SLAM算法,前端都大同小異,而且?guī)g的位姿變換好多都是先用勻速模型做初始值,去適配優(yōu)化,實在不行再進行特征點的匹配求位姿。真正區(qū)別還是關(guān)鍵幀的處理,強調(diào)運動的整體性,而不是兩張圖之間單純的匹配精度。

這是我個人的觀點,有不對的還請大佬指正。

--以上來自2020年9月,回過頭2023年5月自己使用測試過之后發(fā)現(xiàn),目前的特征提取依賴性并不強,傳統(tǒng)的也能做得比較好,反而神經(jīng)網(wǎng)絡(luò)的提取穩(wěn)定性和重復(fù)性可能不夠強。

但是對描述子的計算和匹配上,還是有一定參考性,更實用,感興趣的朋友可以自己也測試看看

作者:劉國慶

談?wù)勎业目捶ò?,不一定正確,僅供參考:

1、算力和功耗問題,背后也是成本問題,也是最致命的問題。即使是TX2這類面向嵌入式的GPU,耗電和成本也非??捎^……FPGA硬件實現(xiàn)網(wǎng)絡(luò),或者做訂制ASIC可以同時解決算力和功耗問題,不過貌似學(xué)術(shù)界貌似認為這些不是它們應(yīng)該解決的問題,而且結(jié)果復(fù)現(xiàn)嚴重依賴硬件,不太爽。算力相對受限這一點也是我個人做東西沒有用基于學(xué)習(xí)的特征的原因。

另對于題主所言“提取速度和所需算力不會有太大差異”,請問是使用哪一種特征提取網(wǎng)絡(luò),又是和哪一種傳統(tǒng)特征提取算法,在何種計算平臺進行的對比測試所得到的結(jié)論呢?我沒做過詳細的耗時和算力需求對比,但是我還是對該結(jié)論有點懷疑。

2、夠用就好,盲目追求高精度在落地應(yīng)用方面是不可取的。好比Nvidia RTX 20系顯卡,2080Ti價格比2080S提高了接近一倍,性能提升只有20%~30%,對于成本敏感的落地應(yīng)用而言,你會做這個交易嗎?何況2080s算力本身也不算差。

3、應(yīng)該有正在推進中的落地應(yīng)用,只是涉及到商業(yè)機密,你我不知道罷了。

編輯:黃飛

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103432
  • SLAM
    +關(guān)注

    關(guān)注

    24

    文章

    440

    瀏覽量

    32473
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    多層。 每一層都由若干個神經(jīng)元構(gòu)成,神經(jīng)元之間通過權(quán)重連接。信號在神經(jīng)網(wǎng)絡(luò)中是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(luò)(CNN) : CNN主要由卷積層、池化層和全連接層組成。
    的頭像 發(fā)表于 02-12 15:53 ?639次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過訓(xùn)練數(shù)據(jù)自動調(diào)整網(wǎng)絡(luò)參數(shù),實現(xiàn)對輸入數(shù)據(jù)的分類、回歸等任務(wù),無需人工進行復(fù)雜的特征工程。 泛化能力強 : BP
    的頭像 發(fā)表于 02-12 15:36 ?894次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的基本原理

    輸入層、隱藏層和輸出層組成。其中,輸入層負責接收外部輸入數(shù)據(jù),這些數(shù)據(jù)隨后被傳遞到隱藏層。隱藏層是BP神經(jīng)網(wǎng)絡(luò)的核心部分,它可以通過一層或多層神經(jīng)元對輸入數(shù)據(jù)進行加權(quán)求和,并通過非線性激活函數(shù)(如ReLU、sigmoid或tan
    的頭像 發(fā)表于 02-12 15:13 ?822次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    ),是深度學(xué)習(xí)的代表算法之一。 一、基本原理 卷積運算 卷積運算是卷積神經(jīng)網(wǎng)絡(luò)的核心,用于提取圖像中的局部特征。 定義卷積核:卷積核是一個小的矩陣,用于在輸入圖像上滑動,提取局部
    的頭像 發(fā)表于 11-15 14:47 ?1760次閱讀

    基于LSTM神經(jīng)網(wǎng)絡(luò)的情感分析方法

    能力而受到廣泛關(guān)注。 1. 引言 情感分析在商業(yè)智能、客戶服務(wù)、社交媒體監(jiān)控等領(lǐng)域具有廣泛的應(yīng)用。傳統(tǒng)的情感分析方法依賴于手工特征提取和機器學(xué)習(xí)算法,但這些方法往往難以處理文本中的長距離依賴關(guān)系。LSTM作為一種循環(huán)神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-13 10:15 ?1263次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來越多地支持以前無法實現(xiàn)或者難以實現(xiàn)的應(yīng)用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對人工智能和機器學(xué)習(xí)的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)中提取
    發(fā)表于 10-24 13:56

    卷積神經(jīng)網(wǎng)絡(luò)共包括哪些層級

    變換等復(fù)雜計算處理,從原始數(shù)據(jù)中提取并學(xué)習(xí)特征,最終完成分類、回歸等任務(wù)。下面將詳細闡述卷積神經(jīng)網(wǎng)絡(luò)所包含的層級。
    的頭像 發(fā)表于 07-11 15:58 ?2816次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用場景及優(yōu)缺點

    1.1 卷積神經(jīng)網(wǎng)絡(luò)的定義 卷積神經(jīng)網(wǎng)絡(luò)是一種深度學(xué)習(xí)模型,它通過模擬人類視覺系統(tǒng)的工作方式,對輸入數(shù)據(jù)進行特征提取和分類。與傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-11 14:45 ?1816次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)通常包括哪幾層

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理等領(lǐng)域。CNN的核心特點是能夠自動提取輸入數(shù)據(jù)
    的頭像 發(fā)表于 07-11 14:41 ?1404次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本概念、原理及特點

    的基本概念、原理、特點以及在不同領(lǐng)域的應(yīng)用情況。 一、卷積神經(jīng)網(wǎng)絡(luò)的基本概念 卷積神經(jīng)網(wǎng)絡(luò)是一種深度學(xué)習(xí)算法,它由多層卷積層和池化層堆疊而成。卷積層負責提取圖像中的局部特征,而池化層則
    的頭像 發(fā)表于 07-11 14:38 ?2437次閱讀

    三層神經(jīng)網(wǎng)絡(luò)模型的優(yōu)缺點

    是一種前饋神經(jīng)網(wǎng)絡(luò),由輸入層、兩個隱藏層和輸出層組成。輸入層接收輸入數(shù)據(jù),隱藏層對輸入數(shù)據(jù)進行處理和特征提取,輸出層生成最終的預(yù)測結(jié)果。 模型結(jié)構(gòu) 三層神經(jīng)網(wǎng)絡(luò)模型的結(jié)構(gòu)如下: 輸入層
    的頭像 發(fā)表于 07-11 10:58 ?1058次閱讀

    怎么對神經(jīng)網(wǎng)絡(luò)重新訓(xùn)練

    發(fā)生變化,導(dǎo)致神經(jīng)網(wǎng)絡(luò)的泛化能力下降。為了保持神經(jīng)網(wǎng)絡(luò)的性能,需要對其進行重新訓(xùn)練。本文將詳細介紹重新訓(xùn)練神經(jīng)網(wǎng)絡(luò)的步驟和方法。 數(shù)據(jù)預(yù)處理 數(shù)據(jù)預(yù)處理是重新訓(xùn)練
    的頭像 發(fā)表于 07-11 10:25 ?853次閱讀

    BP神經(jīng)網(wǎng)絡(luò)在語言特征信號分類中的應(yīng)用

    Network),即反向傳播神經(jīng)網(wǎng)絡(luò),作為一種強大的多層前饋神經(jīng)網(wǎng)絡(luò),憑借其優(yōu)異的非線性映射能力和高效的學(xué)習(xí)機制,在語言特征信號分類中展現(xiàn)出了巨大的潛力。本文將從BP神經(jīng)網(wǎng)絡(luò)的基本原
    的頭像 發(fā)表于 07-10 15:44 ?780次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機器學(xué)習(xí)領(lǐng)域
    的頭像 發(fā)表于 07-10 15:24 ?2439次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及未來發(fā)展等多個方面,詳細闡述BP
    的頭像 發(fā)表于 07-10 15:20 ?2267次閱讀