一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

計算機(jī)視覺六大主要技術(shù)介紹

jf_pJlTbmA9 ? 來源:智能制造趨勢 ? 作者:智能制造趨勢 ? 2023-07-11 17:06 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

計算機(jī)視覺的應(yīng)用非常廣泛,例如人臉識別、自動駕駛、無人機(jī)、醫(yī)學(xué)影像分析、工業(yè)生產(chǎn)等等。本文將對計算機(jī)視覺應(yīng)用中最為廣泛的六大技術(shù)進(jìn)行介紹。

一、圖像分類

1、定義

圖像分類,根據(jù)各自在圖像信息中所反映的不同特征,把不同類別的目標(biāo)區(qū)分開來的圖像處理方法。它利用計算機(jī)對圖像進(jìn)行定量分析,把圖像或圖像中的每個像元或區(qū)域劃歸為若干個類別中的某一種,以代替人的視覺判讀。

2、分類方法及卷煙車間應(yīng)用

2.1基于色彩特征的索引技術(shù)

常見的檢測模型包括基于直方圖的檢測方法和基于機(jī)器學(xué)習(xí)的檢測方法?;谥狈綀D的檢測方法是最簡單和常見的方法,它僅僅對顏色直方圖進(jìn)行比較。基于機(jī)器學(xué)習(xí)的檢測方法則需要訓(xùn)練一個分類器,以區(qū)分不同類別的圖像。常見的分類器包括支持向量機(jī)(SVM)和隨機(jī)森林(Random Forest)等。

實際業(yè)務(wù)中,可以用來檢測和分類卷煙制造過程中的圖像。例如,可以使用顏色直方圖來檢測卷煙生產(chǎn)線上的煙葉顏色分布情況,以及使用顏色矩來分析卷煙的色調(diào)和亮度等特征。這些方法可以幫助卷煙廠監(jiān)控生產(chǎn)過程,提高生產(chǎn)效率和質(zhì)量。

2.2基于紋理的圖像分類技術(shù)

通常使用紋理特征描述圖像的紋理信息。常見的紋理特征包括灰度共生矩陣(GLCM)、局部二值模式(LBP)和高斯方向梯度直方圖(HOG)等。這些紋理特征可以提取圖像中的紋理信息,包括紋理的顆粒度、方向、周期性等,從而用于圖像分類和識別。

常規(guī)的解決方案包括以下幾個步驟:

1)特征提?。菏褂眉y理特征描述圖像的紋理信息?;叶裙采仃嚕℅LCM)是一種描述灰度紋理特征的方法,它利用灰度級之間的空間關(guān)系來描述紋理信息。局部二值模式(LBP)則是一種描述局部紋理特征的方法,它利用像素點周圍的二進(jìn)制編碼來描述紋理信息。高斯方向梯度直方圖(HOG)則是一種描述方向紋理特征的方法,它利用圖像梯度方向和梯度強(qiáng)度來描述紋理信息。

2)特征選擇:對提取的紋理特征進(jìn)行篩選和選擇,以減少特征維度和提高分類性能。常見的特征選擇方法包括主成分分析(PCA)和線性判別分析(LDA)等。

3)分類模型:選擇一種分類器或分類模型,用于將提取的紋理特征與圖像類別進(jìn)行映射。常見的分類器包括支持向量機(jī)(SVM)、K近鄰算法、決策樹等。

該技術(shù)可以用于檢測和分類卷煙的表面紋理信息。例如,可以使用灰度共生矩陣(GLCM)來分析卷煙的表面紋理特征,如顆粒度、方向性等。這些方法可以幫助卷煙廠監(jiān)控卷煙表面質(zhì)量,提高產(chǎn)品質(zhì)量和生產(chǎn)效率。

2.3基于形狀的圖像分類技術(shù)

基于形狀的圖像分類技術(shù)通常使用圖像形狀特征描述圖像中的形狀信息,常用的形狀特征包括邊緣特征、輪廓特征和區(qū)域特征等?;谛螤畹膱D像分類技術(shù)可以應(yīng)用于許多應(yīng)用領(lǐng)域,如醫(yī)學(xué)圖像、工業(yè)檢測和安防監(jiān)控等。

常規(guī)的解決方案包括以下幾個步驟:

1)特征提?。菏褂眯螤钐卣髅枋鰣D像中的形狀信息。常用的形狀特征包括邊緣特征、輪廓特征和區(qū)域特征等。其中,邊緣特征通常是指提取圖像中的邊緣信息,如Canny邊緣檢測算法。輪廓特征則是指提取圖像中的輪廓信息,如Hu不變矩特征。區(qū)域特征則是指提取圖像中的區(qū)域信息,如Zernike矩和小波矩等。

2)特征選擇:對提取的形狀特征進(jìn)行篩選和選擇,以減少特征維度和提高分類性能。常見的特征選擇方法包括主成分分析(PCA)和線性判別分析(LDA)等。

3)分類模型:選擇一種分類器或分類模型,用于將提取的形狀特征與圖像類別進(jìn)行映射。常見的分類器包括支持向量機(jī)(SVM)、K近鄰算法、決策樹等。

在卷煙廠相關(guān)的應(yīng)用中,可以用于檢測和分類卷煙的形狀信息,如卷煙的長度、粗細(xì)和形態(tài)等。例如,可以使用輪廓特征和區(qū)域特征來描述卷煙的形狀信息,然后使用分類器對不同形狀的卷煙進(jìn)行分類。這些方法可以幫助卷煙廠監(jiān)控卷煙形狀質(zhì)量,提高產(chǎn)品質(zhì)量和生產(chǎn)效率。

2.4基于空間關(guān)系的圖像分類技術(shù)

利用圖像中不同區(qū)域之間的空間關(guān)系,來描述和分類圖像的一種方法。這種方法通常用于場景分類、物體識別和圖像標(biāo)注等領(lǐng)域。

常規(guī)的解決方案包括以下幾個步驟:

1)特征提取:提取圖像中的區(qū)域特征,通常包括顏色、紋理、形狀等特征。

2)空間關(guān)系建模:根據(jù)提取的特征,對不同區(qū)域之間的空間關(guān)系進(jìn)行建模,例如使用關(guān)系圖模型或基于視覺單詞的方法。

3)分類模型:選擇一種分類器或分類模型,用于將提取的特征與圖像類別進(jìn)行映射。常見的分類器包括支持向量機(jī)(SVM)、卷積神經(jīng)網(wǎng)絡(luò)(CNN)等。

在實際應(yīng)用中可以檢測和分類卷煙生產(chǎn)過程中的不同區(qū)域和組件,例如卷煙的過濾嘴、煙膜和濾棒等。常用的解決方案是基于視覺單詞的方法,即將圖像中的每個區(qū)域表示為一組視覺單詞,并通過計算視覺單詞之間的空間關(guān)系來描述區(qū)域之間的空間關(guān)系。然后,可以使用分類器對不同區(qū)域進(jìn)行分類,以實現(xiàn)卷煙生產(chǎn)過程中的自動化檢測和分類。

二、目標(biāo)檢測

目標(biāo)檢測是指在圖像或視頻中,識別出目標(biāo)物體所在的位置,并標(biāo)注出其所屬的類別的任務(wù)。相比于圖像分類任務(wù),目標(biāo)檢測需要對目標(biāo)的位置和數(shù)量進(jìn)行準(zhǔn)確的識別,因此其難度更大,但也更加實用。目標(biāo)檢測通常應(yīng)用于智能安防、自動駕駛、無人機(jī)等領(lǐng)域,能夠?qū)δ繕?biāo)進(jìn)行追蹤、識別和分析,有助于提高智能決策和系統(tǒng)自主性。

常見的目標(biāo)檢測模型包括:

1)Faster R-CNN:是一種基于深度神經(jīng)網(wǎng)絡(luò)的目標(biāo)檢測模型,它通過在區(qū)域提議網(wǎng)絡(luò)(Region Proposal Network, RPN)中引入錨點來提高檢測速度,同時采用了RoI Pooling層來實現(xiàn)不同大小的目標(biāo)檢測。

2)YOLO(You Only Look Once):是一種基于單階段目標(biāo)檢測算法的模型,它將目標(biāo)檢測任務(wù)轉(zhuǎn)化為一個回歸問題,通過卷積神經(jīng)網(wǎng)絡(luò)預(yù)測目標(biāo)的類別和位置。

3)SSD(Single Shot MultiBox Detector):也是一種基于單階段目標(biāo)檢測算法的模型,通過在每個特征層上應(yīng)用不同大小和形狀的先驗框,從而實現(xiàn)對不同尺度目標(biāo)的檢測。

目標(biāo)檢測的適用場景包括但不限于:

1)智能安防:監(jiān)控場景中的人員和車輛,實現(xiàn)目標(biāo)追蹤和識別。

自動駕駛:通過識別道路標(biāo)志、交通信號燈、行人和其他車輛等來實現(xiàn)自主駕駛。

2)無人機(jī):對無人機(jī)飛行區(qū)域中的目標(biāo)進(jìn)行識別和跟蹤,以實現(xiàn)智能控制和導(dǎo)航。

3)工業(yè)制造:在生產(chǎn)過程中對產(chǎn)品進(jìn)行檢測和分類,提高生產(chǎn)效率和質(zhì)量。

4)醫(yī)療診斷:通過對醫(yī)學(xué)圖像中的腫瘤等異常進(jìn)行識別和定位,輔助醫(yī)生進(jìn)行診斷和治療。

目標(biāo)檢測的性能指標(biāo)主要包括準(zhǔn)確率、召回率、F1得分等,常用的評價方法有mAP(mean Average Precision)和IoU(Intersection over Union)等。在實際應(yīng)用中,可以根據(jù)具體場景和需求,選擇不同的模型和算法來實現(xiàn)目標(biāo)檢測任務(wù)。

三、目標(biāo)跟蹤

目標(biāo)跟蹤是指在視頻序列中,對于已知的初始目標(biāo),在后續(xù)幀中通過對目標(biāo)的特征提取和跟蹤算法進(jìn)行處理,實現(xiàn)對目標(biāo)位置、形態(tài)等信息的實時跟蹤。目標(biāo)跟蹤技術(shù)適用于視頻監(jiān)控、無人駕駛、智能交通等領(lǐng)域,可以用于目標(biāo)的實時跟蹤和識別,實現(xiàn)自動化控制和智能化分析。

常用的目標(biāo)跟蹤算法包括以下幾種:

1)基于相關(guān)濾波的跟蹤方法

這種方法是將目標(biāo)與模板進(jìn)行相關(guān)性計算,計算得到的結(jié)果可以表示目標(biāo)在當(dāng)前幀的位置。常用的相關(guān)濾波算法包括均值歸一化相關(guān)濾波(Mean Normalized Correlation,MNC)、峰值信號比相關(guān)濾波(Peak-to-Correlation Energy Ratio,PCER)等。

2)基于粒子濾波的跟蹤方法

這種方法通過在目標(biāo)周圍隨機(jī)生成多個粒子,然后根據(jù)目標(biāo)的運動模型,對這些粒子進(jìn)行預(yù)測,再用觀測信息對預(yù)測的粒子進(jìn)行權(quán)重更新,最終選擇權(quán)重最高的粒子來表示目標(biāo)的位置。常用的粒子濾波算法包括卡爾曼濾波(Kalman Filter,KF)、粒子濾波(Particle Filter,PF)等。

3)基于深度學(xué)習(xí)的跟蹤方法

這種方法使用深度學(xué)習(xí)算法對目標(biāo)進(jìn)行特征提取和表示,然后根據(jù)目標(biāo)在前一幀的位置和特征,對目標(biāo)在當(dāng)前幀的位置進(jìn)行預(yù)測。常用的深度學(xué)習(xí)跟蹤算法包括循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,RNN)、卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)等。

目標(biāo)跟蹤技術(shù)適用于視頻監(jiān)控、無人駕駛、智能交通等領(lǐng)域,可以用于目標(biāo)的實時跟蹤和識別,實現(xiàn)自動化控制和智能化分析。

四、語義分割

旨在將輸入圖像中的每個像素標(biāo)記為屬于哪個語義類別。與目標(biāo)檢測和圖像分類不同,語義分割不僅可以識別圖像中的物體,還可以為每個像素分配標(biāo)簽,從而提供更詳細(xì)和準(zhǔn)確的圖像理解。

語義分割適用于需要對圖像進(jìn)行精細(xì)分割和像素級分類的場景,例如自動駕駛中的道路分割、醫(yī)學(xué)圖像中的病變分割、地理信息系統(tǒng)中的土地分類等。

常見的語義分割模型包括FCN(Fully Convolutional Network)、U-Net、DeepLab等。其中FCN模型是最早被提出并被廣泛使用的語義分割模型之一,它將全連接層轉(zhuǎn)換為卷積層,從而實現(xiàn)端到端的像素級分類。U-Net模型通過引入對稱的上采樣和下采樣路徑,能夠更好地處理分辨率較低的輸入圖像。DeepLab模型則通過空洞卷積(Dilated Convolution)和空間金字塔池化(Spatial Pyramid Pooling)等技術(shù),提高了圖像語義分割的精度。

除了這些常用模型外,近年來還涌現(xiàn)出了許多基于深度學(xué)習(xí)的新型語義分割模型,如PSPNet、DeepLab V3+等,它們在精度和效率等方面都有所提高。

五、實例分割

實例分割是結(jié)合目標(biāo)檢測和語義分割的一個更高層級的任務(wù)。

實例分割是計算機(jī)視覺中的一項任務(wù),旨在同時檢測圖像中的物體,并將每個物體分割成精確的像素級別的區(qū)域。與語義分割不同,實例分割不僅可以分割出不同類別的物體,還可以將它們分割成獨立的、像素級別的區(qū)域。

實例分割適用于需要對圖像進(jìn)行精細(xì)分割并區(qū)分不同物體的場景,例如自動駕駛中的行人和車輛分割、醫(yī)學(xué)圖像中的器官分割、遙感圖像中的建筑物分割等。

常見的實例分割模型包括Mask R-CNN、FCIS(Fully Convolutional Instance-aware Semantic Segmentation)等。其中,Mask R-CNN是一種基于 Faster R-CNN 框架的實例分割模型,通過添加分割頭網(wǎng)絡(luò)在目標(biāo)檢測框架中增加了實例分割的功能,從而實現(xiàn)了同時檢測和分割的目標(biāo)。FCIS模型則是一種全卷積實例分割模型,它使用了RoI pooling和RoI reshape等技術(shù),可以在不增加計算量的情況下同時實現(xiàn)目標(biāo)檢測和實例分割。

除了這些常用模型外,近年來還涌現(xiàn)出了許多基于深度學(xué)習(xí)的新型實例分割模型,如SOLO(Segmenting Objects by Locations)等,它們在精度和效率等方面都有所提高。

六、影像重建

影像重建是指通過對原始圖像進(jìn)行處理和重構(gòu),生成高質(zhì)量的圖像或視頻。其應(yīng)用場景包括醫(yī)學(xué)影像學(xué)、遙感圖像、安全監(jiān)控等領(lǐng)域。

在醫(yī)學(xué)影像學(xué)中,影像重建技術(shù)可以應(yīng)用于CT、MRI等醫(yī)學(xué)影像的重建,幫助醫(yī)生更精準(zhǔn)地診斷和治療病情。在遙感圖像領(lǐng)域,影像重建技術(shù)可以幫助提高遙感圖像的分辨率和質(zhì)量,為資源管理、環(huán)境監(jiān)測等提供支持。在安全監(jiān)控領(lǐng)域,影像重建技術(shù)可以幫助提高監(jiān)控圖像的清晰度和識別度,增強(qiáng)安全監(jiān)控的效果。

影像重建技術(shù)主要包括基于插值的方法、基于統(tǒng)計建模的方法和基于深度學(xué)習(xí)的方法。其中,基于插值的方法是最簡單的方法之一,它通過對原始圖像進(jìn)行插值操作來增加圖像的分辨率。基于統(tǒng)計建模的方法則通過對樣本進(jìn)行統(tǒng)計建模來重建圖像,如主成分分析(PCA)、獨立成分分析(ICA)等?;谏疃葘W(xué)習(xí)的方法則是當(dāng)前最先進(jìn)的影像重建方法之一,如卷積神經(jīng)網(wǎng)絡(luò)(CNN)和生成對抗網(wǎng)絡(luò)(GAN)。這些模型通過學(xué)習(xí)大量數(shù)據(jù)來重構(gòu)圖像,并且在不同的任務(wù)中取得了很好的效果。

計算機(jī)視覺是當(dāng)前最熱門的研究之一,是一門多學(xué)科交叉的研究,隨著對計算機(jī)視覺研究的深入,很多科學(xué)家相信將為人工智能行業(yè)的發(fā)展奠定基礎(chǔ)。

文章來源:智能制造趨勢

審核編輯:湯梓紅

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 計算機(jī)
    +關(guān)注

    關(guān)注

    19

    文章

    7667

    瀏覽量

    90864
  • 人臉識別
    +關(guān)注

    關(guān)注

    77

    文章

    4089

    瀏覽量

    84350
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8505

    瀏覽量

    134677
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    機(jī)器視覺計算機(jī)視覺的關(guān)系簡述

    。計算機(jī)視覺是一門獨立的學(xué)科,有著30年左右的歷史,集圖像處理、模式識別、人工智能技術(shù)為一體,著重服務(wù)于一幅或多幅圖像的計算機(jī)分析。機(jī)器視覺
    發(fā)表于 05-13 14:57

    讓機(jī)器“看見”—計算機(jī)視覺入門及實戰(zhàn) 第二期基礎(chǔ)技術(shù)

    過優(yōu)異成績。其主要的興趣是關(guān)注人工智能特別是計算機(jī)視覺技術(shù)如何從技術(shù)、產(chǎn)品和商業(yè)角度在真實世界中大規(guī)模落地。主題簡介及亮點:本次直播,講者將
    發(fā)表于 09-04 17:56

    基于OpenCV的計算機(jī)視覺技術(shù)實現(xiàn)

    基于OpenCV的計算機(jī)視覺技術(shù)實現(xiàn)OpencV是用來實現(xiàn)計算機(jī)視覺相關(guān)技術(shù)的開放源碼工作庫,是
    發(fā)表于 11-23 21:06 ?0次下載
    基于OpenCV的<b class='flag-5'>計算機(jī)</b><b class='flag-5'>視覺</b><b class='flag-5'>技術(shù)</b>實現(xiàn)

    計算機(jī)視覺突破工業(yè)化紅線,六大細(xì)分領(lǐng)域前途大好

    計算機(jī)視覺被認(rèn)為是人工智能最受關(guān)注的方向之一,預(yù)計2020年將達(dá)725億的市場規(guī)模,有研究表明有六大細(xì)分領(lǐng)域前景廣闊。
    發(fā)表于 12-12 16:27 ?2928次閱讀

    計算機(jī)視覺與機(jī)器視覺區(qū)別

     “計算機(jī)視覺”,是指用計算機(jī)實現(xiàn)人的視覺功能,對客觀世界的三維場景的感知、識別和理解。計算機(jī)視覺
    的頭像 發(fā)表于 12-08 09:27 ?1.3w次閱讀

    計算機(jī)視覺的發(fā)展歷史_計算機(jī)視覺的應(yīng)用方向

    計算機(jī)視覺40多年的發(fā)展中,盡管人們提出了大量的理論和方法,但總體上說,計算機(jī)視覺經(jīng)歷了4個主要歷程。即: 馬爾
    的頭像 發(fā)表于 07-30 17:21 ?8019次閱讀

    計算機(jī)視覺常用算法_計算機(jī)視覺有哪些分類

    本文主要介紹計算機(jī)視覺常用算法及計算機(jī)視覺的分類。
    的頭像 發(fā)表于 07-30 17:34 ?1.4w次閱讀

    現(xiàn)代企業(yè)計算機(jī)視覺發(fā)展的主要趨勢是什么

    人工智能驅(qū)動的計算機(jī)視覺解決方案、消費級無人機(jī)以及工業(yè)4.0應(yīng)用的不斷增加將推動這一變化。以下是現(xiàn)代企業(yè)計算機(jī)視覺發(fā)展的主要趨勢:
    的頭像 發(fā)表于 09-30 16:11 ?2910次閱讀

    計算機(jī)視覺中的重要研究方向

    主要介紹計算機(jī)視覺中的幾個重要的研究方向。主要包括圖像分類、目標(biāo)檢測、語義分割、實例分割、全景分割等。通過對這幾個
    的頭像 發(fā)表于 11-19 14:32 ?1.2w次閱讀

    計算機(jī)視覺的工作流程與主要應(yīng)用

    計算機(jī)視覺主要目的是讓計算機(jī)能像人類一樣甚至比人類更好地看見和識別世界。計算機(jī)視覺通常使用C+
    的頭像 發(fā)表于 01-08 14:06 ?5935次閱讀

    計算機(jī)視覺主要的五大技術(shù)

    正如斯坦福大學(xué)公開課CS231所言,計算機(jī)視覺任務(wù)大多是基于卷積神經(jīng)網(wǎng)絡(luò)完成。比如圖像分類、定位和檢測等。那么,對于計算機(jī)視覺而言,有哪些任務(wù)是占據(jù)
    的頭像 發(fā)表于 06-18 11:18 ?9026次閱讀
    <b class='flag-5'>計算機(jī)</b><b class='flag-5'>視覺</b>中<b class='flag-5'>主要</b>的五大<b class='flag-5'>技術(shù)</b>

    計算機(jī)視覺的基礎(chǔ)概念和現(xiàn)實應(yīng)用

    本文將介紹計算機(jī)視覺的基礎(chǔ)概念和現(xiàn)實應(yīng)用,對任何聽說過計算機(jī)視覺但不確定它是什么以及如何應(yīng)用的人,本文是了解
    的頭像 發(fā)表于 11-08 10:10 ?1986次閱讀

    機(jī)器視覺計算機(jī)視覺的區(qū)別

    機(jī)器視覺計算機(jī)視覺的區(qū)別 機(jī)器視覺計算機(jī)視覺是兩個相關(guān)但不同的概念。雖然許多人使用這兩個術(shù)語
    的頭像 發(fā)表于 08-09 16:51 ?2514次閱讀

    計算機(jī)視覺的十大算法

    視覺技術(shù)的發(fā)展起到了重要的推動作用。一、圖像分割算法圖像分割算法是計算機(jī)視覺領(lǐng)域的基礎(chǔ)算法之一,它的主要任務(wù)是將圖像分割成不同的區(qū)域或?qū)ο蟆?/div>
    的頭像 發(fā)表于 02-19 13:26 ?1935次閱讀
    <b class='flag-5'>計算機(jī)</b><b class='flag-5'>視覺</b>的十大算法

    計算機(jī)視覺主要研究方向

    計算機(jī)視覺(Computer Vision, CV)作為人工智能領(lǐng)域的一個重要分支,致力于使計算機(jī)能夠像人眼一樣理解和解釋圖像和視頻中的信息。隨著深度學(xué)習(xí)、大數(shù)據(jù)等技術(shù)的快速發(fā)展,
    的頭像 發(fā)表于 06-06 17:17 ?1885次閱讀