一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

2023年發(fā)布的25個開源大型語言模型總結(jié)

穎脈Imgtec ? 2023-08-01 00:21 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

大型語言模型(llm)是一種人工智能(AI),在大量文本和代碼數(shù)據(jù)集上進(jìn)行訓(xùn)練。它們可以用于各種任務(wù),包括生成文本、翻譯語言和編寫不同類型的創(chuàng)意內(nèi)容。

今年開始,人們對開源LLM越來越感興趣。這些模型是在開源許可下發(fā)布的,這意味著任何人都可以使用、修改和分發(fā)它們。這使得研究人員、開發(fā)人員和企業(yè)都可以嘗試LLM,并為它們開發(fā)新的應(yīng)用程序。使用開源llm有很多好處。首先它們通常比專業(yè)的LLM更價便宜。并且它們更加透明,這意味著研究人員可以研究它們是如何工作的以及它們是如何做出決定的。最主要的是它們更加靈活,可以針對不同的任務(wù)進(jìn)行定制。

本文總結(jié)了當(dāng)前可用的開源llm的全部(幾乎全部)列表,以及有關(guān)其許可選項和源代碼存儲庫的信息,希望對你有所幫助。

▎SAIL 7B
基于LLaMa的搜索增強(qiáng)
參數(shù):7B
許可類型:GPL-3.0
發(fā)布日期:2023年5月
論文:SAIL — Search Augmented Instruction Learning


▎Guanaco
采用高效微調(diào)方法QLoRA發(fā)布的LLM模型
參數(shù):65B
許可類型:MIT
發(fā)布日期:2023年5月
論文:QLoRA — Efficient Finetuning of Quantized LLMs


▎RMKV
與transformer的LLM性能相當(dāng)?shù)腞NN模型
參數(shù):100M–14B
許可類型:Apache 2.0
發(fā)布日期:2023年5月
論文:Scaling RNN to 1.5B and Reach Transformer LM Performance


▎MPT-7B
MosaicML的基礎(chǔ)系列模型
參數(shù):7B
許可類型:Apache 2.0
發(fā)布日期:2023年5月
論文:MPT-7B — A New Standard for Open-Source, Commercially Usable LLMs


▎OpenLLaMa
在RedPajama數(shù)據(jù)集上訓(xùn)練的Meta AI的LLaMA 7B的另一個開源復(fù)制。
參數(shù):3,7B
許可類型:Apache 2.0
發(fā)布日期:2023年5月
論文:Meet OpenLLaMA — An Open-Source Reproduction of Meta AI’s LLaMA Large Language Model


▎RedPajama-INCITE
基于RedPajama數(shù)據(jù)集上訓(xùn)練的指令調(diào)整和聊天Pythia模型。
參數(shù):3B, 7B
許可類型:Apache 2.0
發(fā)布日期:2023年5月
論文:RedPajama-INCITE family of models including base, instruction-tuned & chat models


▎h2oGPT
H2O的微調(diào)框架和文檔問答功能的聊天機(jī)器人UI
參數(shù):12B,30B
許可類型:Apache 2.0
發(fā)布日期:2023年5月
論文:Building the World’s Best Open-Source Large Language Model:H2O.ai’s Journey


▎FastChat-T5
通過微調(diào)Flan-t5-xl對從ShareGPT收集的用戶共享對話進(jìn)行訓(xùn)練的聊天機(jī)器人
參數(shù):3B
許可類型:Apache 2.0
發(fā)布日期:2023年4月
論文:FastChat-T5 — our compact and commercial-friendly chatbot!


▎GPT4All
用于訓(xùn)練和部署強(qiáng)大的定制llm的完整工具系統(tǒng)
參數(shù):7–13B
許可類型:MIT
發(fā)布日期:2023年4月
論文:GPT4All:An ecosystem of open-source on-edge large language models.


▎MiniGPT-4
基于BLIP-2和Vicuna LLM的Visual LLM模型
參數(shù):13B
許可類型:BSD-3-Clause
發(fā)布日期:2023年4月
論文:MiniGPT-4 — Enhancing Vision-Language Understanding withAdvanced Large Language Models


▎StableLM
StableLM的LLM模型系列
參數(shù):7B
許可類型:CC BY-NC-SA-4.0
發(fā)布日期:2023年4月
論文:Stability AI Launches the First of its StableLM Suite of Language Models


▎BloomZ
通過多任務(wù)微調(diào)實現(xiàn)跨語言泛化
參數(shù):176B
許可類型:Apache 2.0
發(fā)布日期:2023年4月
論文:Cross-lingual Generalization through Multitask Finetuning


▎Dolly
Pythia 12B LLM在Databricks ML平臺上訓(xùn)練的模型
參數(shù):12B
許可類型:Apache 2.0
發(fā)布日期:2023年4月
論文:Free Dolly — Introducing the World’s First Truly Open Instruction-Tuned LLM


▎Baize Chatbot
基于LLaMa的開源聊天模型
參數(shù):30B
許可類型:GPL-3.0 license
發(fā)布日期:2023年4月
論文:Baize — An Open-Source Chat Model with Parameter-Efficient Tuning on Self-Chat Data


▎ColossalChat
由ColossalAI開源發(fā)布的一個完整的RLHF流程訓(xùn)練的模型
參數(shù):N/A
許可類型:Apache 2.0
發(fā)布日期:2023年4月
論文:ColossalChat — An Open-Source Solution for Cloning ChatGPT With a Complete RLHF Pipeline


▎Lit LLaMa
來自Lightning AI的LLaMA的開源實現(xiàn)
參數(shù):13B
許可類型:Apache 2.0
發(fā)布日期:2023年4月
論文:Why We’re Building Lit-LLaMA


▎Cerebras-GPT
開放的,計算效率高的,大型語言模型
參數(shù):111M-13B
許可類型:Apache 2.0
發(fā)布日期:2023年3月
論文:Cerebras-GPT — Open Compute-Optimal Language ModelsTrained on the Cerebras Wafer-Scale Cluster


▎Open Flamingo
Deepmind的Flamingo模型的開源實現(xiàn)
參數(shù):9B
許可類型:MIT License
發(fā)布日期:2023年3月
論文:Openflamingo — An Open-source Framework For Training Vision-language Models With In-context Learning


▎Chat GLM
使用開放式雙語(中英文)雙向密集預(yù)訓(xùn)練模型
參數(shù):6B-130B
許可類型:Apache 2.0
發(fā)布日期:2023年3月
論文:GLM-130B:An Open Bilingual Pre-trained Model


▎DLite
通過微調(diào)Alpaca數(shù)據(jù)集上最小的GPT-2模型
參數(shù):124M
許可類型:Apache 2.0
發(fā)布日期:2023年3月
論文:Introducing DLite, a Lightweight ChatGPT-Like Model Based on Dolly


▎Alpaca 7B
描述:斯坦福大學(xué)發(fā)布的指令遵循LLaMA模型
參數(shù):7B
許可類型:Apache 2.0
發(fā)布日期:2023年3月
論文:Alpaca — A Strong, Replicable Instruction-Following Model


▎Flan UL2
在預(yù)訓(xùn)練的UL2檢查點上訓(xùn)練Flan 20B模型。
參數(shù):20B
許可類型:MIT License
發(fā)布日期:2023年3月
論文:A New Open Source Flan 20B with UL2


▎Flan-T5
T5在各種數(shù)據(jù)集上的指令微調(diào),提高預(yù)訓(xùn)練語言模型的可用性
參數(shù):60M–11B
許可類型:Apache 2.0
發(fā)布日期:2023年2月
論文:Scaling Instruction-Finetuned Language Models


總結(jié)

最后再補(bǔ)充2個剛剛發(fā)布的模型,一個是llama-2,這個我們文章也在前幾天介紹了微調(diào)和使用的方法。另外一個就是昨天剛看到的新聞,stabilityai發(fā)布的 FreeWilly2,它是在 Llama2 70B 上微調(diào)的結(jié)果,目前在open_llm_leaderboard上排第一。開源大型語言模型正在迅速發(fā)展,開源社區(qū)發(fā)布了許多模型。這些模型為開發(fā)人員、研究人員和愛好者提供了一個非常大機(jī)會,可以在沒有專有系統(tǒng)的情況下試驗尖端的語言技術(shù)。隨著越來越多的組織和個人為這些模型的發(fā)展做出貢獻(xiàn),我們可以期待看到更強(qiáng)大、更容易使用和更創(chuàng)新的語言模型,它們將塑造自然語言處理的未來。

作者:Manikanth

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 語言
    +關(guān)注

    關(guān)注

    1

    文章

    97

    瀏覽量

    24498
  • 開源
    +關(guān)注

    關(guān)注

    3

    文章

    3680

    瀏覽量

    43819
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3519

    瀏覽量

    50414
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    無法在OVMS上運行來自Meta的大型語言模型 (LLM),為什么?

    無法在 OVMS 上運行來自 Meta 的大型語言模型 (LLM),例如 LLaMa2。 從 OVMS GitHub* 存儲庫運行 llama_chat Python* Demo 時遇到錯誤。
    發(fā)表于 03-05 08:07

    語言模型的解碼策略與關(guān)鍵優(yōu)化總結(jié)

    本文系統(tǒng)性地闡述了大型語言模型(LargeLanguageModels,LLMs)中的解碼策略技術(shù)原理及其實踐應(yīng)用。通過深入分析各類解碼算法的工作機(jī)制、性能特征和優(yōu)化方法,為研究者和工程師提供了全面
    的頭像 發(fā)表于 02-18 12:00 ?582次閱讀
    大<b class='flag-5'>語言</b><b class='flag-5'>模型</b>的解碼策略與關(guān)鍵優(yōu)化<b class='flag-5'>總結(jié)</b>

    2024AI開發(fā)者中間件工具生態(tài)全面總結(jié)

    最近,開源中國 OSCHINA、Gitee 與 Gitee AI?聯(lián)合發(fā)布了《2024 中國開源開發(fā)者報告》。 報告聚焦 AI 大模型領(lǐng)域,對過去一
    的頭像 發(fā)表于 02-14 09:45 ?605次閱讀

    Meta重磅發(fā)布Llama 3.3 70B:開源AI模型的新里程碑

    新的高度。 一,技術(shù)突破:開源智能的新高度 Llama 3.3 70B 模型發(fā)布,標(biāo)志著開源AI模型在智能水平上的一大飛躍。它不僅達(dá)到了之
    的頭像 發(fā)表于 12-18 16:46 ?582次閱讀
    Meta重磅<b class='flag-5'>發(fā)布</b>Llama 3.3 70B:<b class='flag-5'>開源</b>AI<b class='flag-5'>模型</b>的新里程碑

    語言模型開發(fā)框架是什么

    語言模型開發(fā)框架是指用于訓(xùn)練、推理和部署大型語言模型的軟件工具和庫。下面,AI部落小編為您介紹大語言
    的頭像 發(fā)表于 12-06 10:28 ?523次閱讀

    NVIDIA GeForce 256發(fā)布25

    適逢 NVIDIA GeForce 256 發(fā)布 25 周年之際,我們共同慶祝它在游戲領(lǐng)域的突破,這一突破改變了娛樂方式,并為 AI 驅(qū)動的未來奠定了基礎(chǔ)。
    的頭像 發(fā)表于 11-19 16:05 ?690次閱讀

    騰訊發(fā)布開源MoE大語言模型Hunyuan-Large

    近日,騰訊公司宣布成功推出業(yè)界領(lǐng)先的開源MoE(Mixture of Experts,專家混合)大語言模型——Hunyuan-Large。這款模型不僅在參數(shù)量上刷新了業(yè)界紀(jì)錄,更在效果
    的頭像 發(fā)表于 11-06 10:57 ?719次閱讀

    語言模型如何開發(fā)

    語言模型的開發(fā)是一復(fù)雜且細(xì)致的過程,涵蓋了數(shù)據(jù)準(zhǔn)備、模型架構(gòu)設(shè)計、訓(xùn)練、微調(diào)和部署等多個階段。以下是對大語言
    的頭像 發(fā)表于 11-04 10:14 ?604次閱讀

    谷歌計劃12月發(fā)布Gemini 2.0模型

    近日,有消息稱谷歌計劃在12月發(fā)布其下一代人工智能模型——Gemini 2.0。這一消息引發(fā)了業(yè)界的廣泛關(guān)注,因為谷歌在人工智能領(lǐng)域一直保持著領(lǐng)先地位,而Gemini系列模型更是其重要的產(chǎn)品之一。
    的頭像 發(fā)表于 10-29 11:02 ?1137次閱讀

    搭建開源語言模型服務(wù)的方法

    本文我們將總結(jié)5種搭建開源語言模型服務(wù)的方法,每種都附帶詳細(xì)的操作步驟,以及各自的優(yōu)缺點。
    的頭像 發(fā)表于 10-29 09:17 ?690次閱讀

    科大訊飛發(fā)布訊飛星火4.0 Turbo大模型及星火多語言模型

    近日,科大訊飛正式推出了其最新研發(fā)成果——訊飛星火4.0 Turbo大模型。這一發(fā)布不僅標(biāo)志著科大訊飛在人工智能領(lǐng)域的又一次重大突破,也預(yù)示著其在自然語言處理技術(shù)上邁向了全新的高度。 在發(fā)布
    的頭像 發(fā)表于 10-24 13:58 ?904次閱讀

    如何利用大型語言模型驅(qū)動的搜索為公司創(chuàng)造價值

    大型語言模型LLMs具有自動化內(nèi)容創(chuàng)建、提高內(nèi)容質(zhì)量及多樣化的潛力,可重塑企業(yè)與信息的交互方式。通過利用LLMs,企業(yè)能提升工作效率,降低運營成本,并獲得深入洞察。來自EgeGürdeniz
    的頭像 發(fā)表于 10-13 08:07 ?407次閱讀
    如何利用<b class='flag-5'>大型</b><b class='flag-5'>語言</b><b class='flag-5'>模型</b>驅(qū)動的搜索為公司創(chuàng)造價值

    使用OpenVINO 2024.4在算力魔方上部署Llama-3.2-1B-Instruct模型

    前面我們分享了《三步完成Llama3在算力魔方的本地量化和部署》。20249月25日,Meta又發(fā)布了Llama3.2:一語言
    的頭像 發(fā)表于 10-12 09:39 ?1451次閱讀
    使用OpenVINO 2024.4在算力魔方上部署Llama-3.2-1B-Instruct<b class='flag-5'>模型</b>

    2024 19 種最佳大型語言模型

    大型語言模型2023生成式人工智能熱潮背后的推動力。然而,它們已經(jīng)存在了一段時間了。LLM是黑盒AI系統(tǒng),它使用深度學(xué)習(xí)對超大數(shù)據(jù)集進(jìn)行
    的頭像 發(fā)表于 08-30 12:56 ?985次閱讀
    2024 <b class='flag-5'>年</b> 19 種最佳<b class='flag-5'>大型</b><b class='flag-5'>語言</b><b class='flag-5'>模型</b>

    基于CPU的大型語言模型推理實驗

    隨著計算和數(shù)據(jù)處理變得越來越分散和復(fù)雜,AI 的重點正在從初始訓(xùn)練轉(zhuǎn)向更高效的AI 推理。Meta 的 Llama3 是功能強(qiáng)大的公開可用的大型語言模型 (LLM)。本次測試采用開源
    的頭像 發(fā)表于 07-18 14:28 ?1000次閱讀
    基于CPU的<b class='flag-5'>大型</b><b class='flag-5'>語言</b><b class='flag-5'>模型</b>推理實驗