大型語言模型(llm)是一種人工智能(AI),在大量文本和代碼數(shù)據(jù)集上進(jìn)行訓(xùn)練。它們可以用于各種任務(wù),包括生成文本、翻譯語言和編寫不同類型的創(chuàng)意內(nèi)容。
今年開始,人們對開源LLM越來越感興趣。這些模型是在開源許可下發(fā)布的,這意味著任何人都可以使用、修改和分發(fā)它們。這使得研究人員、開發(fā)人員和企業(yè)都可以嘗試LLM,并為它們開發(fā)新的應(yīng)用程序。使用開源llm有很多好處。首先它們通常比專業(yè)的LLM更價便宜。并且它們更加透明,這意味著研究人員可以研究它們是如何工作的以及它們是如何做出決定的。最主要的是它們更加靈活,可以針對不同的任務(wù)進(jìn)行定制。
本文總結(jié)了當(dāng)前可用的開源llm的全部(幾乎全部)列表,以及有關(guān)其許可選項和源代碼存儲庫的信息,希望對你有所幫助。
▎SAIL 7B
基于LLaMa的搜索增強(qiáng)
參數(shù):7B
許可類型:GPL-3.0
發(fā)布日期:2023年5月
論文:SAIL — Search Augmented Instruction Learning
▎Guanaco
采用高效微調(diào)方法QLoRA發(fā)布的LLM模型
參數(shù):65B
許可類型:MIT
發(fā)布日期:2023年5月
論文:QLoRA — Efficient Finetuning of Quantized LLMs
▎RMKV
與transformer的LLM性能相當(dāng)?shù)腞NN模型
參數(shù):100M–14B
許可類型:Apache 2.0
發(fā)布日期:2023年5月
論文:Scaling RNN to 1.5B and Reach Transformer LM Performance
▎MPT-7B
MosaicML的基礎(chǔ)系列模型
參數(shù):7B
許可類型:Apache 2.0
發(fā)布日期:2023年5月
論文:MPT-7B — A New Standard for Open-Source, Commercially Usable LLMs
▎OpenLLaMa
在RedPajama數(shù)據(jù)集上訓(xùn)練的Meta AI的LLaMA 7B的另一個開源復(fù)制。
參數(shù):3,7B
許可類型:Apache 2.0
發(fā)布日期:2023年5月
論文:Meet OpenLLaMA — An Open-Source Reproduction of Meta AI’s LLaMA Large Language Model
▎RedPajama-INCITE
基于RedPajama數(shù)據(jù)集上訓(xùn)練的指令調(diào)整和聊天Pythia模型。
參數(shù):3B, 7B
許可類型:Apache 2.0
發(fā)布日期:2023年5月
論文:RedPajama-INCITE family of models including base, instruction-tuned & chat models
▎h2oGPT
H2O的微調(diào)框架和文檔問答功能的聊天機(jī)器人UI
參數(shù):12B,30B
許可類型:Apache 2.0
發(fā)布日期:2023年5月
論文:Building the World’s Best Open-Source Large Language Model:H2O.ai’s Journey
▎FastChat-T5
通過微調(diào)Flan-t5-xl對從ShareGPT收集的用戶共享對話進(jìn)行訓(xùn)練的聊天機(jī)器人
參數(shù):3B
許可類型:Apache 2.0
發(fā)布日期:2023年4月
論文:FastChat-T5 — our compact and commercial-friendly chatbot!
▎GPT4All
用于訓(xùn)練和部署強(qiáng)大的定制llm的完整工具系統(tǒng)
參數(shù):7–13B
許可類型:MIT
發(fā)布日期:2023年4月
論文:GPT4All:An ecosystem of open-source on-edge large language models.
▎MiniGPT-4
基于BLIP-2和Vicuna LLM的Visual LLM模型
參數(shù):13B
許可類型:BSD-3-Clause
發(fā)布日期:2023年4月
論文:MiniGPT-4 — Enhancing Vision-Language Understanding withAdvanced Large Language Models
▎StableLM
StableLM的LLM模型系列
參數(shù):7B
許可類型:CC BY-NC-SA-4.0
發(fā)布日期:2023年4月
論文:Stability AI Launches the First of its StableLM Suite of Language Models
▎BloomZ
通過多任務(wù)微調(diào)實現(xiàn)跨語言泛化
參數(shù):176B
許可類型:Apache 2.0
發(fā)布日期:2023年4月
論文:Cross-lingual Generalization through Multitask Finetuning
▎Dolly
Pythia 12B LLM在Databricks ML平臺上訓(xùn)練的模型
參數(shù):12B
許可類型:Apache 2.0
發(fā)布日期:2023年4月
論文:Free Dolly — Introducing the World’s First Truly Open Instruction-Tuned LLM
▎Baize Chatbot
基于LLaMa的開源聊天模型
參數(shù):30B
許可類型:GPL-3.0 license
發(fā)布日期:2023年4月
論文:Baize — An Open-Source Chat Model with Parameter-Efficient Tuning on Self-Chat Data
▎ColossalChat
由ColossalAI開源發(fā)布的一個完整的RLHF流程訓(xùn)練的模型
參數(shù):N/A
許可類型:Apache 2.0
發(fā)布日期:2023年4月
論文:ColossalChat — An Open-Source Solution for Cloning ChatGPT With a Complete RLHF Pipeline
▎Lit LLaMa
來自Lightning AI的LLaMA的開源實現(xiàn)
參數(shù):13B
許可類型:Apache 2.0
發(fā)布日期:2023年4月
論文:Why We’re Building Lit-LLaMA
▎Cerebras-GPT
開放的,計算效率高的,大型語言模型
參數(shù):111M-13B
許可類型:Apache 2.0
發(fā)布日期:2023年3月
論文:Cerebras-GPT — Open Compute-Optimal Language ModelsTrained on the Cerebras Wafer-Scale Cluster
▎Open Flamingo
Deepmind的Flamingo模型的開源實現(xiàn)
參數(shù):9B
許可類型:MIT License
發(fā)布日期:2023年3月
論文:Openflamingo — An Open-source Framework For Training Vision-language Models With In-context Learning
▎Chat GLM
使用開放式雙語(中英文)雙向密集預(yù)訓(xùn)練模型
參數(shù):6B-130B
許可類型:Apache 2.0
發(fā)布日期:2023年3月
論文:GLM-130B:An Open Bilingual Pre-trained Model
▎DLite
通過微調(diào)Alpaca數(shù)據(jù)集上最小的GPT-2模型
參數(shù):124M
許可類型:Apache 2.0
發(fā)布日期:2023年3月
論文:Introducing DLite, a Lightweight ChatGPT-Like Model Based on Dolly
▎Alpaca 7B
描述:斯坦福大學(xué)發(fā)布的指令遵循LLaMA模型
參數(shù):7B
許可類型:Apache 2.0
發(fā)布日期:2023年3月
論文:Alpaca — A Strong, Replicable Instruction-Following Model
▎Flan UL2
在預(yù)訓(xùn)練的UL2檢查點上訓(xùn)練Flan 20B模型。
參數(shù):20B
許可類型:MIT License
發(fā)布日期:2023年3月
論文:A New Open Source Flan 20B with UL2
▎Flan-T5
T5在各種數(shù)據(jù)集上的指令微調(diào),提高預(yù)訓(xùn)練語言模型的可用性
參數(shù):60M–11B
許可類型:Apache 2.0
發(fā)布日期:2023年2月
論文:Scaling Instruction-Finetuned Language Models
總結(jié)
最后再補(bǔ)充2個剛剛發(fā)布的模型,一個是llama-2,這個我們文章也在前幾天介紹了微調(diào)和使用的方法。另外一個就是昨天剛看到的新聞,stabilityai發(fā)布的 FreeWilly2,它是在 Llama2 70B 上微調(diào)的結(jié)果,目前在open_llm_leaderboard上排第一。開源大型語言模型正在迅速發(fā)展,開源社區(qū)發(fā)布了許多模型。這些模型為開發(fā)人員、研究人員和愛好者提供了一個非常大機(jī)會,可以在沒有專有系統(tǒng)的情況下試驗尖端的語言技術(shù)。隨著越來越多的組織和個人為這些模型的發(fā)展做出貢獻(xiàn),我們可以期待看到更強(qiáng)大、更容易使用和更創(chuàng)新的語言模型,它們將塑造自然語言處理的未來。
作者:Manikanth
-
語言
+關(guān)注
關(guān)注
1文章
97瀏覽量
24498 -
開源
+關(guān)注
關(guān)注
3文章
3680瀏覽量
43819 -
模型
+關(guān)注
關(guān)注
1文章
3519瀏覽量
50414
發(fā)布評論請先 登錄
無法在OVMS上運行來自Meta的大型語言模型 (LLM),為什么?
大語言模型的解碼策略與關(guān)鍵優(yōu)化總結(jié)

2024年AI開發(fā)者中間件工具生態(tài)全面總結(jié)
Meta重磅發(fā)布Llama 3.3 70B:開源AI模型的新里程碑

大語言模型開發(fā)框架是什么
NVIDIA GeForce 256發(fā)布25周年
騰訊發(fā)布開源MoE大語言模型Hunyuan-Large
大語言模型如何開發(fā)
谷歌計劃12月發(fā)布Gemini 2.0模型
搭建開源大語言模型服務(wù)的方法
科大訊飛發(fā)布訊飛星火4.0 Turbo大模型及星火多語言大模型
如何利用大型語言模型驅(qū)動的搜索為公司創(chuàng)造價值

使用OpenVINO 2024.4在算力魔方上部署Llama-3.2-1B-Instruct模型

2024 年 19 種最佳大型語言模型

基于CPU的大型語言模型推理實驗

評論