一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)通俗理解

工程師鄧生 ? 來(lái)源:未知 ? 作者:劉芹 ? 2023-08-17 16:30 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經(jīng)網(wǎng)絡(luò)通俗理解

卷積神經(jīng)網(wǎng)絡(luò),英文名為Convolutional Neural Network,成為了當(dāng)前深度學(xué)習(xí)領(lǐng)域最重要的算法之一,也是很多圖像和語(yǔ)音領(lǐng)域任務(wù)中最常用的深度學(xué)習(xí)模型之一。本文將從通俗易懂的角度介紹卷積神經(jīng)網(wǎng)絡(luò),讓大家更好地理解這個(gè)重要的算法。

卷積神經(jīng)網(wǎng)絡(luò)的概念

在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,先來(lái)看看卷積操作,因?yàn)榫矸e神經(jīng)網(wǎng)絡(luò)就是以卷積操作為基礎(chǔ)的。

卷積操作是一種數(shù)學(xué)上的操作,它可以將兩個(gè)函數(shù)f和g產(chǎn)生第三個(gè)函數(shù)h。在機(jī)器學(xué)習(xí)中,我們通常使用卷積來(lái)實(shí)現(xiàn)特征提取。例如,我們可以使用卷積來(lái)識(shí)別圖片中的邊緣等。

卷積操作可以用公式表示為:

h[n] = (f * g)[n] = ∑f[k] * g[n-k]

其中,f和g是兩個(gè)長(zhǎng)度為N的序列,h是長(zhǎng)度為N的序列。卷積操作的核心就是使用g去乘以f的部分元素并做加和,以此生成h的每個(gè)元素。

卷積神經(jīng)網(wǎng)絡(luò)使用卷積操作來(lái)計(jì)算不同的卷積層,從原始的輸入數(shù)據(jù)中提取出特征。接著,它們?cè)谌B接層中進(jìn)行分類,從而產(chǎn)生輸出。卷積神經(jīng)網(wǎng)絡(luò)通常還包括池化層,以使網(wǎng)絡(luò)具有更好的魯棒性。

卷積神經(jīng)網(wǎng)絡(luò)的重要性

卷積神經(jīng)網(wǎng)絡(luò)之所以變得如此重要,是因?yàn)樗?a href="http://www.www27dydycom.cn/v/tag/3744/" target="_blank">計(jì)算機(jī)視覺(jué)和圖像識(shí)別任務(wù)中取得了驚人的成功。卷積神經(jīng)網(wǎng)絡(luò)使用卷積核來(lái)從輸入圖像中提取出與任務(wù)相關(guān)的特征。這些特征是網(wǎng)絡(luò)中的一個(gè)重要層,神經(jīng)網(wǎng)絡(luò)依靠這些特征學(xué)習(xí)來(lái)確定最后的分類結(jié)果。這些特定的特征是有意義的,例如在物體識(shí)別任務(wù)中,它們可以是特定顏色的形狀、邊緣、紋理或組合的組合。

實(shí)際的卷積神經(jīng)網(wǎng)絡(luò)通常由多個(gè)卷積層,池化層和全連接層組成。卷積層是整個(gè)神經(jīng)網(wǎng)絡(luò)中最重要的部分,它可以用來(lái)進(jìn)行特征提取。池化層是一種降低特征圖維度的技術(shù),這個(gè)層通常用于減少計(jì)算量并生成具有平移不變性的圖像。全連接層用于分類,輸出概率。

卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

卷積神經(jīng)網(wǎng)絡(luò)在許多領(lǐng)域都得到了廣泛應(yīng)用。下面介紹一些常見(jiàn)的應(yīng)用:

1. 圖像識(shí)別

卷積神經(jīng)網(wǎng)絡(luò)可以對(duì)圖像進(jìn)行高效的分類,它能夠?qū)W會(huì)圖像的特征,如邊緣,文理,紋理等。這使得卷積神經(jīng)網(wǎng)絡(luò)成為圖像識(shí)別領(lǐng)域的首選模型。

2. 語(yǔ)音識(shí)別

卷積神經(jīng)網(wǎng)絡(luò)還可以用于語(yǔ)音識(shí)別領(lǐng)域。語(yǔ)音識(shí)別的難點(diǎn)在于將聲音信號(hào)轉(zhuǎn)換為文本信息。卷積神經(jīng)網(wǎng)絡(luò)可以從聲音信號(hào)中提取語(yǔ)音特征,然后將其轉(zhuǎn)換為文本。

3. 自然語(yǔ)言處理

卷積神經(jīng)網(wǎng)絡(luò)也可以用于自然語(yǔ)言處理領(lǐng)域。在這方面,卷積神經(jīng)網(wǎng)絡(luò)通常用于對(duì)文本進(jìn)行分類、情感分析等。

總結(jié)

在這篇文章中,我們介紹了卷積神經(jīng)網(wǎng)絡(luò)的概念、重要性和應(yīng)用。卷積神經(jīng)網(wǎng)絡(luò)作為一種深度學(xué)習(xí)的算法,它可以很好地處理圖像、語(yǔ)音和文本等領(lǐng)域的任務(wù)。我們希望本文能夠讓您更好地理解卷積神經(jīng)網(wǎng)絡(luò),并在實(shí)際應(yīng)用中取得更好的結(jié)果。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    卷積神經(jīng)網(wǎng)絡(luò)如何監(jiān)測(cè)皮帶堵料情況 #人工智能

    卷積神經(jīng)網(wǎng)絡(luò)
    jf_60804796
    發(fā)布于 :2025年07月01日 17:08:42

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?678次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發(fā)表于 02-12 15:18 ?778次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?869次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?1218次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實(shí)現(xiàn)工具和框架應(yīng)運(yùn)而生,為研究人員和開(kāi)發(fā)者提供了強(qiáng)大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?674次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的參數(shù)調(diào)整方法

    卷積神經(jīng)網(wǎng)絡(luò)因其在處理具有空間層次結(jié)構(gòu)的數(shù)據(jù)時(shí)的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設(shè)置。參數(shù)調(diào)整是一個(gè)復(fù)雜的過(guò)程,涉及到多個(gè)超參數(shù)的選擇和優(yōu)化。 網(wǎng)絡(luò)架構(gòu)參數(shù)
    的頭像 發(fā)表于 11-15 15:10 ?1218次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語(yǔ)言處理中的應(yīng)用

    自然語(yǔ)言處理是人工智能領(lǐng)域的一個(gè)重要分支,它致力于使計(jì)算機(jī)能夠理解、解釋和生成人類語(yǔ)言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為一種強(qiáng)大的模型,在圖像識(shí)別和語(yǔ)音處理等領(lǐng)域取得了顯著成果
    的頭像 發(fā)表于 11-15 14:58 ?809次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見(jiàn)的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1887次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來(lái)在多個(gè)領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識(shí)別、語(yǔ)音識(shí)別和自然語(yǔ)言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個(gè)分支,因其在圖像處理任務(wù)中的卓越性能而受到廣泛關(guān)注。 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:52 ?852次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一類包含卷積計(jì)算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks
    的頭像 發(fā)表于 11-15 14:47 ?1792次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1139次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機(jī)制

    LSTM(Long Short-Term Memory,長(zhǎng)短期記憶)神經(jīng)網(wǎng)絡(luò)是一種特殊的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),設(shè)計(jì)用于解決長(zhǎng)期依賴問(wèn)題,特別是在處理時(shí)間序列數(shù)據(jù)時(shí)表現(xiàn)出色。以下是LSTM神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-13 10:05 ?1641次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    取特征的強(qiáng)大工具,例如識(shí)別音頻信號(hào)或圖像信號(hào)中的復(fù)雜模式就是其應(yīng)用之一。 1、什么是卷積神經(jīng)網(wǎng)絡(luò)? 神經(jīng)網(wǎng)絡(luò)是一種由神經(jīng)元組成的系統(tǒng)或結(jié)構(gòu),它使AI能夠更好地
    發(fā)表于 10-24 13:56

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14