一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)詳解 卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層及各層功能

工程師鄧生 ? 來(lái)源:未知 ? 作者:劉芹 ? 2023-08-21 16:41 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經(jīng)網(wǎng)絡(luò)詳解 卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層及各層功能

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNNs)是一個(gè)用于圖像和語(yǔ)音識(shí)別深度學(xué)習(xí)技術(shù)。它是一種專門為處理多維數(shù)組而設(shè)計(jì)的神經(jīng)網(wǎng)絡(luò)。CNN不僅廣泛應(yīng)用于計(jì)算機(jī)視覺領(lǐng)域,還在自然語(yǔ)言處理、語(yǔ)音識(shí)別和游戲等領(lǐng)域有廣泛應(yīng)用。下文將詳細(xì)地介紹CNN的各層及其功能。

1.卷積層(Convolutional Layers)

卷積層是CNN的核心組成部分,其作用是提取輸入圖像的特征。卷積層通過卷積操作將輸入圖像與多個(gè)卷積核進(jìn)行卷積運(yùn)算,從而提取出圖像中的多個(gè)特征。每個(gè)卷積核可以提取出不同的特征,如邊緣、斑點(diǎn)、紋理等,多個(gè)卷積核可以提取出更多的特征。卷積層通常會(huì)包括多個(gè)濾波器,用于在輸入圖像上提取多個(gè)特征圖。

卷積層處理輸入數(shù)據(jù)時(shí),會(huì)以固定大小的滑動(dòng)窗口掃描輸入數(shù)據(jù)。這個(gè)滑動(dòng)窗口被稱為卷積核或?yàn)V波器,其大小通常為3×3、5×5等。卷積核會(huì)與輸入數(shù)據(jù)做點(diǎn)積運(yùn)算,計(jì)算在每個(gè)位置上得到特征圖的值。通過不同大小的卷積核比如 3×3, 5×5 等,CNN在不同尺度下學(xué)習(xí)圖像特征。

2.池化層(Pooling Layers)

池化層通常跟在卷積層之后,其作用是降低輸入數(shù)據(jù)的維度,并減少計(jì)算量。池化層通常會(huì)選擇一個(gè)固定的窗口大小與固定的步長(zhǎng)。在窗口范圍內(nèi),池化層會(huì)選擇一個(gè)最大值或平均值作為輸出。這個(gè)過程可以看做是對(duì)輸入數(shù)據(jù)進(jìn)行采樣,其有效減少了特征圖中的冗余信息,提高了計(jì)算效率。

在池化層中,max pooling 和 average pooling 是常用的兩種方法。其中 max pooling 可以更好的提取出輸入數(shù)據(jù)中的特征,擁有一定的不變性。

2.1 Max Pooling

Max Pooling 是被廣泛應(yīng)用的一種池化方式,它的作用是對(duì)特征圖做降采樣。Max Pooling 操作通常采用一個(gè)2×2的窗口,以2為步長(zhǎng),對(duì)每個(gè)通道的特征圖進(jìn)行操作。從特征圖中提取出每個(gè)矩形窗口相應(yīng)位置的最大元素,將這些最大值組成的新矩陣作為輸出。

如下圖所示,是 Max Pooling 作用的示意圖。在這個(gè)示例中,一個(gè)2×2 的窗口以2的步長(zhǎng)從原矩陣中掃描過來(lái),提取矩陣中每個(gè)窗口中的最大元素組成新矩陣??梢钥闯觯戮仃嚲S度比原矩陣降低了一半。

2.2 Average Pooling

Average Pooling (均值池化)是另一種常用的池化方式,它的作用也是對(duì)特征圖做降采樣。Average Pooling 操作和 Max Pooling 操作類似,但是輸出的值是窗口內(nèi)元素的平均值。

3.批標(biāo)準(zhǔn)化層(Batch Normalization Layers)

批標(biāo)準(zhǔn)化層通常跟在卷積層或全連接層之后,其作用是將輸入數(shù)據(jù)進(jìn)行歸一化處理。這可以使輸入數(shù)據(jù)有更可靠的分布,有效防止神經(jīng)網(wǎng)絡(luò)中產(chǎn)生梯度消失的問題。

批標(biāo)準(zhǔn)化使用輸入數(shù)據(jù)的平均值和標(biāo)準(zhǔn)差,對(duì)數(shù)據(jù)進(jìn)行歸一化處理。這個(gè)過程可以看作是對(duì)輸入數(shù)據(jù)進(jìn)行均值縮放和平移,使其具有更可靠的分布。批標(biāo)準(zhǔn)化可以有效提高訓(xùn)練速度和網(wǎng)絡(luò)的準(zhǔn)確性。

4.經(jīng)典激活函數(shù)(Activation Functions)

激活函數(shù)通常跟在卷積層或全連接層之后,其作用是對(duì)輸出數(shù)據(jù)進(jìn)行非線性變換。激活函數(shù)可以使神經(jīng)網(wǎng)絡(luò)具有更強(qiáng)的表示和逼近能力。

常見的激活函數(shù)有 Sigmoid、Tanh、ReLU、LeakyReLU等函數(shù)。

4.1 Sigmoid

Sigmoid 激活函數(shù)是最常見的激活函數(shù)之一,它的公式為 f(x) = 1 / (1 + exp(-x))。Sigmoid 函數(shù)的特點(diǎn)是輸出值在0到1之間,這使它可以被用于二分類問題。然而,當(dāng)網(wǎng)絡(luò)很深時(shí),Sigmoid 激活函數(shù)容易產(chǎn)生梯度消失的問題,限制了神經(jīng)網(wǎng)絡(luò)的深度。

4.2 Tanh

Tanh 激活函數(shù)與 Sigmoid 函數(shù)相似,但是它輸出值的范圍在-1到1之間,因此它可以被用于多元分類問題。Tanh 函數(shù)在神經(jīng)網(wǎng)絡(luò)中使用較少。

4.3 ReLU

ReLU(修正線性單元)激活函數(shù)處理速度快,具有快速訓(xùn)練、實(shí)現(xiàn)簡(jiǎn)單、結(jié)果不易消失、計(jì)算速度快等優(yōu)點(diǎn)。ReLU的公式為f(x)=max(0, x),即對(duì)于一個(gè)輸入的x,若其小于0,則激活函數(shù)返回0,否則返回其本身。ReLU的優(yōu)點(diǎn)在于計(jì)算速度快,實(shí)現(xiàn)較為簡(jiǎn)單,而且相對(duì)于其他激活函數(shù)已經(jīng)證明其效果更好。

4.4 Leaky ReLU

Leaky ReLU是ReLU的一種變型,如下圖。當(dāng)x小于0時(shí),函數(shù)在該點(diǎn)斜率較小,而不是像ReLU那樣完全水平,這可以緩解ReLU死亡神經(jīng)元的問題。在一些實(shí)際應(yīng)用中,Leaky ReLU的性能確實(shí)優(yōu)于ReLU。

以上就是卷積神經(jīng)網(wǎng)絡(luò)的幾個(gè)核心組成部分。在實(shí)際應(yīng)用中,卷積神經(jīng)網(wǎng)絡(luò)通常包含多個(gè)卷積層和池化層、批標(biāo)準(zhǔn)化層以及經(jīng)典的激活函數(shù)。這些組件相互協(xié)作,構(gòu)成了強(qiáng)大的深度學(xué)習(xí)模型,可以用于圖像分類、目標(biāo)檢測(cè)、人臉識(shí)別等諸多領(lǐng)域,已經(jīng)成為計(jì)算機(jī)視覺領(lǐng)域中最成功的模型之一。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    卷積神經(jīng)網(wǎng)絡(luò)如何監(jiān)測(cè)皮帶堵料情況 #人工智能

    卷積神經(jīng)網(wǎng)絡(luò)
    jf_60804796
    發(fā)布于 :2025年07月01日 17:08:42

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?662次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)步驟詳解

    BP神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)步驟主要包括以下幾個(gè)階段:網(wǎng)絡(luò)初始化、前向傳播、誤差計(jì)算、反向傳播和權(quán)重更新。以下是對(duì)這些步驟的詳細(xì)解釋: 一、網(wǎng)絡(luò)初始化 確定網(wǎng)
    的頭像 發(fā)表于 02-12 15:50 ?645次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?851次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    所擬合的數(shù)學(xué)模型的形式受到大腦中神經(jīng)元的連接和行為的啟發(fā),最初是為了研究大腦功能而設(shè)計(jì)的。然而,數(shù)據(jù)科學(xué)中常用的神經(jīng)網(wǎng)絡(luò)作為大腦模型已經(jīng)過時(shí),現(xiàn)在它們只是能夠在某些應(yīng)用中提供最先進(jìn)性能的機(jī)器學(xué)習(xí)模型。近年來(lái),由于
    的頭像 發(fā)表于 01-09 10:24 ?1184次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)工具與框架

    : TensorFlow是由Google Brain團(tuán)隊(duì)開發(fā)的開源機(jī)器學(xué)習(xí)框架,它支持多種深度學(xué)習(xí)模型的構(gòu)建和訓(xùn)練,包括卷積神經(jīng)網(wǎng)絡(luò)。TensorFlow以其靈活性和可擴(kuò)展性而聞名,適用于研究和生產(chǎn)環(huán)境。 特點(diǎn): 靈活性: Te
    的頭像 發(fā)表于 11-15 15:20 ?668次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的參數(shù)調(diào)整方法

    卷積神經(jīng)網(wǎng)絡(luò)因其在處理具有空間層次結(jié)構(gòu)的數(shù)據(jù)時(shí)的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設(shè)置。參數(shù)調(diào)整是一個(gè)復(fù)雜的過程,涉及到多個(gè)超參數(shù)的選擇和優(yōu)化。 網(wǎng)絡(luò)架構(gòu)參數(shù)
    的頭像 發(fā)表于 11-15 15:10 ?1206次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語(yǔ)言處理中的應(yīng)用

    自然語(yǔ)言處理是人工智能領(lǐng)域的一個(gè)重要分支,它致力于使計(jì)算機(jī)能夠理解、解釋和生成人類語(yǔ)言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為一種強(qiáng)大的模型,在圖像識(shí)別和語(yǔ)音處理等領(lǐng)域取得了顯著成果
    的頭像 發(fā)表于 11-15 14:58 ?803次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1866次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來(lái)在多個(gè)領(lǐng)域取得了顯著的進(jìn)展,尤其是在圖像識(shí)別、語(yǔ)音識(shí)別和自然語(yǔ)言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個(gè)分支,因其在圖像處理任務(wù)中的卓越性能而受到廣泛關(guān)注。 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:52 ?844次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一類包含卷積計(jì)算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks
    的頭像 發(fā)表于 11-15 14:47 ?1773次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1125次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機(jī)制

    的結(jié)構(gòu)與工作機(jī)制的介紹: 一、LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu) LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)主要包括以下幾個(gè)部分: 記憶單元(Memory Cell) : 記憶單元是LSTM網(wǎng)絡(luò)的核心,負(fù)責(zé)在整個(gè)序列
    的頭像 發(fā)表于 11-13 10:05 ?1629次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來(lái)越多地支持以前無(wú)法實(shí)現(xiàn)或者難以實(shí)現(xiàn)的應(yīng)用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對(duì)人工智能和機(jī)器學(xué)習(xí)的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)中提
    發(fā)表于 10-24 13:56

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14