一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)算法三大類

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-21 16:50 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經(jīng)網(wǎng)絡(luò)算法三大類

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種常用的人工神經(jīng)網(wǎng)絡(luò),它的主要應(yīng)用領(lǐng)域是圖像識別和計算機視覺方面。CNN通過卷積層、池化層和全連接層等組成,這些組成形成了 CNN 的算法三大類,即卷積層、池化層和全連接層。下面,本文將著重講解 CNN 的算法三大類。

一、卷積層

卷積層是卷積神經(jīng)網(wǎng)絡(luò)最重要的部分之一,它是由一組過濾器或卷積核組成的。卷積核的作用就是掃描整張圖像的各個像素點,然后提取其中的特征,這些特征可以是邊緣、角、顏色、紋理、線條等等。卷積核在掃描時,每掃描一次就移動一定的步長,通常步長為1,也可以是其他的值。卷積核掃描圖像時,會在每個窗口區(qū)域上做卷積運算,然后再進行匯集。

其中,f和w分別是圖像和卷積核,卷積核大小為k x k,步長為s,偏置項為b,輸出特征圖的大小為 (n-k)/s +1。

卷積操作的目的是對特征進行有效提取,由于卷積層可以有效提取對于某些特征比較敏感的像素值,因此卷積神經(jīng)網(wǎng)絡(luò)的性能可以進一步提高。

二、池化層

卷積層的提取特征效果很好,但是在一張大圖像的處理中,大量的計算對于神經(jīng)網(wǎng)絡(luò)的運行速度帶來了不小的影響,為了解決這個問題,人們提出了池化層。池化層的作用是將圖像的特征進行降維,從而減少神經(jīng)網(wǎng)絡(luò)的參數(shù)量,同時也能夠避免某些特征的過度擬合。池化層更多的是一種取樣策略,該層不是直接對圖像進行運算,而是對輸出結(jié)果進行采樣。常見的池化方式有最大池化和平均池化。

最大池化:指選取激活值最大的像素作為采樣值,例如 $2 \times 2$ 的矩陣

在最大池化操作中,我們可以采用 $2 \times 2$ 池化器,它將第一行第一列的值和第一行第二列的值做個比較,然后取出最大值。同樣的,它也可以采用第二行第一列和第二行第二列中的最大值

最大池化的尺寸可以設(shè)定,一般是選擇 $2 \times 2$ 的池化器。最大池化不僅可以對像素值進行降維處理,而且能夠提取出一些特征,例如它可以提取圖像的強度、顏色等等特征。

平均池化:平均池化與最大值池化很相似,不同的是它并不是直接選擇激活值最大的像素,而是選擇區(qū)域內(nèi)值的平均值。在直覺上,最大池化更適合在數(shù)據(jù)中選擇有用的特征,而平均池化更加適合一些簡單的分類任務(wù)。

三、全連接層

卷積層和池化層只是對圖像的特征進行二維處理,而全連接層是將所有的特征進行展開,并與權(quán)重相乘相加。它的作用是將卷積層提取到的圖像特征轉(zhuǎn)化為特征向量并輸入到分類器中。全連接層和傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)傳輸方式一樣,但不同的是,它是對每個單元都進行了連接處理,因此它需要處理的數(shù)據(jù)也比較龐大,是四大環(huán)節(jié)中運算量最大的一個部分。

總結(jié)

卷積神經(jīng)網(wǎng)絡(luò)算法可以劃分為三大類:卷積層、池化層和全連接層。卷積層是卷積神經(jīng)網(wǎng)絡(luò)的核心部分,其目的是對特征進行有效提取;池化層是對特征進行降維,從而減少神經(jīng)網(wǎng)絡(luò)的參數(shù)量,同時也能夠避免某些特征的過度擬合;全連接層將卷積層提取到的圖像特征轉(zhuǎn)化為特征向量并輸入到分類器中。卷積神經(jīng)網(wǎng)絡(luò)通過組合不同的層可以實現(xiàn)卓越的性能,在圖像識別、語音識別、自然語言處理等領(lǐng)域都能夠起到非常優(yōu)秀的作用。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    卷積神經(jīng)網(wǎng)絡(luò)如何監(jiān)測皮帶堵料情況 #人工智能

    卷積神經(jīng)網(wǎng)絡(luò)
    jf_60804796
    發(fā)布于 :2025年07月01日 17:08:42

    無刷電機小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個以相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實現(xiàn)轉(zhuǎn)角預(yù)測,并采用改進遺傳算法來訓(xùn)練
    發(fā)表于 06-25 13:06

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋
    的頭像 發(fā)表于 02-12 15:53 ?665次閱讀

    什么是BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法

    BP神經(jīng)網(wǎng)絡(luò)的反向傳播算法(Backpropagation Algorithm)是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)的有效方法。以下是關(guān)于BP神經(jīng)網(wǎng)絡(luò)的反向傳播
    的頭像 發(fā)表于 02-12 15:18 ?765次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化
    的頭像 發(fā)表于 02-12 15:15 ?855次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工
    的頭像 發(fā)表于 01-09 10:24 ?1188次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)的實現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實現(xiàn)工具和框架應(yīng)運而生,為研究人員和開發(fā)者提供了強大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?669次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的參數(shù)調(diào)整方法

    卷積神經(jīng)網(wǎng)絡(luò)因其在處理具有空間層次結(jié)構(gòu)的數(shù)據(jù)時的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設(shè)置。參數(shù)調(diào)整是一個復(fù)雜的過程,涉及到多個超參數(shù)的選擇和優(yōu)化。 網(wǎng)絡(luò)架構(gòu)參數(shù)
    的頭像 發(fā)表于 11-15 15:10 ?1206次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語言處理中的應(yīng)用

    自然語言處理是人工智能領(lǐng)域的一個重要分支,它致力于使計算機能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為一種強大的模型,在圖像識別和語音處理等領(lǐng)域取得了顯著成果
    的頭像 發(fā)表于 11-15 14:58 ?803次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1868次閱讀

    深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)模型

    深度學(xué)習(xí)近年來在多個領(lǐng)域取得了顯著的進展,尤其是在圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡(luò)作為深度學(xué)習(xí)的一個分支,因其在圖像處理任務(wù)中的卓越性能而受到廣泛關(guān)注。 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 14:52 ?845次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一包含卷積計算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(Feedf
    的頭像 發(fā)表于 11-15 14:47 ?1776次閱讀

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    Moku3.3版更新在Moku:Pro平臺新增了全新的儀器功能【神經(jīng)網(wǎng)絡(luò)】,使用戶能夠在Moku設(shè)備上部署實時機器學(xué)習(xí)算法,進行快速、靈活的信號分析、去噪、傳感器調(diào)節(jié)校準(zhǔn)、閉環(huán)反饋等應(yīng)用。如果您
    的頭像 發(fā)表于 11-01 08:06 ?663次閱讀
    Moku人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來越多地支持以前無法實現(xiàn)或者難以實現(xiàn)的應(yīng)用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對人工智能和機器學(xué)習(xí)的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)中提
    發(fā)表于 10-24 13:56

    【飛凌嵌入式OK3576-C開發(fā)板體驗】RKNN神經(jīng)網(wǎng)絡(luò)算法開發(fā)環(huán)境搭建

    download_model.sh 腳本,該腳本 將下載一個可用的 YOLOv5 ONNX 模型,并存放在當(dāng)前 model 目錄下,參考命令如下: 安裝COCO數(shù)據(jù)集,在深度神經(jīng)網(wǎng)絡(luò)算法中,模型的訓(xùn)練離不開大量的數(shù)據(jù)集,數(shù)據(jù)集用于
    發(fā)表于 10-10 09:28